Errata for

An Introduction to Manifolds, Second Edition

Loring W. Tu

June 14, 2020

- p. 6, Proof of Lemma 1.4: For clarity, the point should be called \(y \), instead of \(x \). Use \(x \) only for the argument of \(f \). Thus, in the first three lines of the proof, change the three instances of \(x \) to \(y \). In Figure 1.3, change the two instances of \(x \) to \(y \). Add to the beginning of the second paragraph “By the chain rule, ...” the sentences

Let \(x^1, \ldots, x^n \) be the variables of \(f \). Then in \(f(p + t(y - p)) \),

\[
x^i = p^i + t(y^i - p^i).
\]

In the rest of the proof, change the twelve instances of \(x \) to \(y \), but of course \(\partial f/\partial x^i \) should not be changed.

- p. 9, Problem 1.5(b): Add at the end “(Hint: To show that a map is \(C^\infty \), you may use the fact that the sum, product, quotient, and composition of \(C^\infty \) functions are \(C^\infty \) whenever they are defined.)”

- p. 9, Problem 1.6: Replace \(g_{12} \) by \(h_{12} \) in two places. In the solution on p. 368, replace “gives the result” by “and setting \(h_{12} = g_{12} + g_{21} \) give the result”.

- p. 12, insert after the paragraph defining an algebra:

\[\text{Example. The set } C^\infty(U) \text{ of all } C^\infty \text{ functions on an open set } U \subset \mathbb{R}^n \text{ is an algebra over } \mathbb{R}. \]

- p. 20, line 5: Delete parentheses around \(a_r \) in its first occurrence.

- p. 20, line 6 of the Example 3.4: “4 → 1” should be “4\(\mapsto \)1”.

- p. 27, Remove the * after Example 3.19 and place it after Exercise 3.20.

- p. 31, proof of Lemma 3.28: Replace the second displayed equation by

\[
\begin{align*}
&i_1 < i_2 < \cdots < i_{\ell - 1} < i_{\ell} \\
&j_1 < j_2 < \cdots < j_{\ell - 1} < j_{\ell} < j_{\ell + 1} < \cdots.
\end{align*}
\]

- p. 31, lines -1, -2, and -4 in the proof of Lemma 3.28: Replace \(a \) by \(\alpha \) in “\(\det[a^j(e_j)] = 0 \)” and “the matrix \([a^j(e_j)]\)”. Also “\(i_1, \ldots, i_{\ell - 1} \)” should be “\(i_1, \ldots, i_{\ell - 1} \)”.

- p. 32, Problem 3.3, line 3: \(A_k(L) \) should be \(A_k(V) \).

- p. 33, Problem 3.9, line 2: zero covector → zero \(n \)-covector.

- p. 37, display -1: Replace \(\omega(X)_p \) by \(\omega(X)(p) \).

- p. 37, insert between display -1 and “Written out in ...”:

This function \(\omega(X) \) is linear in \(X \) over the ring \(C^\infty(U) \); i.e., if \(f \in C^\infty(U) \), then \(\omega(fX) = f\omega(X) \). To show this, it suffices to evaluate \(\omega(fX) \) at an arbitrary point \(p \in U \):

\[
(\omega(fX))(p) = \omega_p(f(p)X_p) \quad \text{(definition of } \omega(fX))
\]
\[
= f(p)\omega_p(X_p) \quad \text{(} \omega_p \text{ is } \mathbb{R} \text{-linear)}
\]
\[
= (f\omega(X))(p) \quad \text{(definition of } f\omega(X)).
\]
• p. 38, delete the second paragraph starting with “This function is actually ...”.

• p. 38, Exercise 4.4, line 2: M should be \mathbb{R}^3.

• p. 47, line −2: Replace “finds” by “found”.

• p. 53, Proposition 5.10, lines 1–2 of proof: “Proposition 5.8” should be “Lemma 5.8”.

• p. 54, line 11: $f : U \to \mathbb{R}^n$ should be $f : U \to \mathbb{R}^m$.

• pp. 56–57, Remark: This remark uses the concept of a diffeomorphism, which is not defined until the next section. Move the entire remark consisting of four paragraphs to p. 63, right before Section 6.4.

• p. 61, Definition 6.5, line 3: Insert “with $F(U) \subset V$” before “such that”.

• p. 61, Definition 6.5, line 4: Replace $\phi(F^{-1}(V) \cap U)$ by $\phi(U)$.

• p. 67**, Definition 6.23, display: Change F to $(F|_U)$.

• p. 70, Problem 6.1(b) Hint: The identity map $\mathbb{R}' \to \mathbb{R}$.

• p. 71, line 1 of paragraph 2: Insert “usually” between “is” and “a process”.

• p. 72, line −3: “$f := f \circ \pi$” should be “$f := f \circ \pi$”.

• p. 81, Problem 7.6, line 2: R should be \mathbb{R}.

• p. 82, Problem 7.8 (c), (d): Move the hint for (d) to the end of the hint for (c).

• p. 83, line −9: $F(k, n)$ should be $G(k, n)$.

• p. 94, Figure 8.3: The i in a_i should be a superscript. This occurs in two places.

• p. 105, Figure 9.4: The rightmost \mathbb{R}^n should be \mathbb{R}^m.

• p. 106, line 5: “$S := f^{-1}(c)$” should be “$S := F^{-1}(c)$”.

• p. 109, Problem 9.10 should be starred.

• p. 112, line 5: Replace 1 by 1.

• p. 117, line −2: “$\psi(f(q)) = (y^1(f(q)), \ldots, y^n(f(q)))$” should be “$\psi(f(q)) = (y^1(f(q)), \ldots, y^m(f(q)))$”.

• p. 118, lines 1 and 3: “$\psi(f(q)) = (y^1(f(q)), \ldots, y^m(f(q)))$” should be “$\psi(f(q)) = (y^1(f(q)), \ldots, y^m(f(q)))$”.

• p. 134, line −3: Change “$M \times \mathbb{R}^n$” to “$M \times \mathbb{R}$”. In fact, in harmony with Example 12.6, one may want to change all occurrences of “$M \times \mathbb{R}$” on line −3 to “$M \times \mathbb{R}^r$”.

• p. 135, display 2: $U \times \mathbb{R}^n$ should be $U \times \mathbb{R}^r$. (“n” should be “r”.)

• p. 138, line 4: “\mathbb{R}^n” should be “\mathbb{R}^r”.

• p. 139, Problem 12.2, line 1: “about p” on a manifold M.

• p. 139, Problem 12.2 (a): “at $\phi(p)$” \longrightarrow “at $\tilde{\phi}(p)$”

• p. 143, line −1: g should be evaluated at $\frac{\|x\|^2 - a^2}{b^2 - a^2}$.

• p. 146, line 4, insert after W_q: “only finitely many of the f_a’s can be nonzero and”

• p. 147, Problem 13.3 (b): After “a manifold,”, insert the sentence “Assume that $A \subset U$.”

• p. 150, lines 4 and 5 in the proof of Lemma 14.1: Change “$\tilde{\phi} : TU \to U \times \mathbb{R}^n$” to “$\tilde{\phi} : TU \to \phi(U) \times \mathbb{R}^n$”, and “$\tilde{\phi} \circ X : U \to U \times \mathbb{R}^n$” to “$\tilde{\phi} \circ X : U \to \phi(U) \times \mathbb{R}^n$”.

• p. 152, first display: Replace $\tilde{X}(q)$ by \tilde{X}_q.
• p. 160, Definition 14.14: Change “A vector field X on N is F-related to a vector field \bar{X} on M” to “A vector field X on N and a vector field \bar{X} on M are F-related to each other”

• pp. 171–174: On these four pages, change “AXA^{-1}” to “$A^{-1}XA$”, and “$A(\cdots)A^{-1}$” to “$A^{-1}(\cdots)A$”.

• p. 172, Part (ii) of the Proof of Lemma 15.18 uses the notation from edition one. Replace it by “Apply part (i) to the matrices $A^{-1}X$ and A”

• p. 178, line 8: “identity” should be “identify”.

• p. 179, Problem 15.9 (b), lines 5 and 6: “elements of order 2” → “elements of order at most 2”

• p. 186, lines −4 and −3: After “If a line has rational slope…” insert “or ∞”.

• p. 191, line −2 of the Proof of Proposition 17.2: Apply both sides of (17.1) to t.

• p. 191, heading of 17.2: Change to “Local Expression for the Differential of a Function”.

• p. 191, line 4 in the proof of Lemma 17.5: Replace “$\tilde{\phi}$” by “$\tilde{\phi}$”.

• p. 197, line 9: (V,y^1,\ldots,y^n) should be (V,y^1,\ldots,y^n).

• p. 198, line −3: Insert “and 17.10” after “by Proposition 17.11”.

• p. 201, line −7: Both “\mathbb{R}^n” should be “U”.

• p. 202, proof of Proposition 18.3, 2nd display: “by Lemma 18.2” → “by (18.2)”

• p. 206, line 4: “for C^∞ function” should be “for C^∞ functions”.

• p. 207, line 4 of the Proof of Proposition 18.12: “the C^∞ inverse” should be “a C^∞ inverse”.

• p. 208, line 1: By Proposition 18.7(iv)

• p. 209, Problem 18.9(d): Replace the initial phrase by “As the image of a compact, connected set G under a continuous map”.

• p. 214, third line of top display: Change $DD\tilde{e}$ to $DD\tilde{f}$.

• p. 215, proof of Propositions 19.7: In second line of the last display, change “(Proposition 19.5)” to “(Proposition 17.10)”. Then move Proposition 19.7 before Proposition 19.5.

• p. 216, In analogy with with the title of Subsection 17.6, change the title of Subsection 19.6 to “. . . an Immersed Submanifold”. Also change “regular” to “an immersed” on line 2 of Subsection 19.6.

• p. 218, Problem 19.3, last line: Change $i \circ c$ to $i \circ h$.

• p. 220, Problem 19.12, (c): Replace by “If D is a derivation of $C^\infty(M)$ and $p \in M$, define $D_p: C^\infty_p(M) \to \mathbb{R}$ by

$$D_p[f] = (\tilde{f})'(p) \in \mathbb{R},$$

where $[f]$ is the germ of f at p and \tilde{f} is a global extension of f, such as those given by Proposition 18.8. Show that $D_p[f]$ is well defined. (Hint: Apply Problem 19.7.)”

• p. 220, Problem 19.12, (d): Change “derivation” to “point-derivation”.

• p. 223, line −2 of the Proof of Proposition 20.2: “$d\left(\frac{\partial}{\partial t}|_{t_0}\omega_t\right)$” should be “$d\left(\frac{\partial}{\partial t}|_{t_0}\omega_t\right)$”.

• p. 225, (20.6) and (20.7): $(-t, p)$ in the formula should be $(-t, \varphi_t(p))$.

• p. 228, 4th line of 2nd display: Change $\sum_{i=1}^k$ to $\sum_{i=1}^\ell$.

3
• p. 228, line 6 after the proof of Proposition 20.8: Change “Proposition 18.7(iii)⇒(i)” to “Proposition 18.7 (iv)⇒(i)”.

• p. 232, Proof of Theorem 20.12: Add to the end of the proof:

"Thus,

\[X(\omega(Y_1, \ldots, Y_k)) = (\mathcal{L}_X \omega)(Y_1, \ldots, Y_k) + \sum_{i=1}^{k} \omega(Y_1, \ldots, [X, Y_i], \ldots, Y_k). \]

Solving for \((\mathcal{L}_X \omega)(Y_1, \ldots, Y_k)\) gives the formula in the theorem."

• p. 239, line 4th display: “orientation \((v_1, \ldots, v_n)\)” → “orientation \([(v_1, \ldots, v_n)]\)”.

• p. 241, line 5: Replace the sentence “But under the identification ... at \((0, 0)\)” by “Under the identification (21.1), the curve \(c(t) = (0, t)\) for \(t \in [\epsilon, \epsilon]\) maps to \(\bar{c}(t) = (1, -t)\). Hence, the tangent vector \(c'(0) = e_2\) at \(p\) maps to \(\bar{c}'(0) = -e_2\) at \(q\), and the ordered basis \(e_1, e_2\) at \(p = (0,0)\) maps to \(e_1, -e_2\) at \(q = (1,0)\).”

• p. 241, line 7 in the first paragraph: Change “Thus, at \((0,0)\)” to “Thus, at \((1,0)\)”.

• p. 245, line 8: “\((⇒)\)” should be “\((⇐)\)”.

• p. 249, line 18: “there are” should be “there is”.

• p. 251, line 4: Change \(\rho \in U \subset S\) to \(\rho \in U \subset A\).

• p. 254, line 3 under the Subsection 22.5: “\(c((0, \epsilon]) \subset M^\circ\)” should be “\(c([0, \epsilon]) \subset M^\circ\)”.

• p. 254, second paragraph of Section 22.5: Replace the second and third sentences by

“In a coordinate neighborhood \((U, x^1, \ldots, x^n)\) in \(M\), such a vector field \(X\) can be written as a linear combination

\[X \rho = \sum_i a_i^\rho(p) \frac{\partial}{\partial x^i} \bigg|_p \quad \text{for} \quad p \in U \cap \partial M. \]

The vector field \(X\) along \(\partial M\) is said to be smooth at \(p \in \partial M\) if there exists a coordinate chart \(U\) containing \(p\) such that the functions \(a^\rho\) on \(U \cap \partial M\) are \(C^\infty\) at \(p\); it is said to be smooth at every point \(\rho \in \partial M\).

• p. 256, 3rd line of last example: Chaneg \(T \rho C\) to \(T_{c(p)} C\).

• p. 261, display above Definition 23.1: “\(\inf_\rho L(f, P)\)” → “\(\inf_\rho U(f, P)\)”.

• p. 265, line 9: \((U, \phi)\) instead of \(\{(U, \phi)\}\). (Remove the braces.)

• p. 266, line 2: Replace “\(\phi_\alpha |_{U_\alpha \cap U_\beta}\)” and “\(\psi_\alpha |_{U_\alpha \cap U_\beta}\)” by “\(\phi_\alpha |_{U_\alpha \cap V_\beta}\)” and “\(\psi_\alpha |_{U_\alpha \cap V_\beta}\)” respectively.

• p. 267, lines 3 and 6: For consistency with equations (23.4, 23.5) on p. 264, put “det” before both occurrences of \(J\), the Jacobian.

• p. 272, Problem 23.3, line 2: “\(\Omega^k_c(M)\)” → “\(\Omega^k_c(M)\)”.

• p. 273, line 9: “smooth \(a\)” should read “a smooth”.

• p. 279, line −2: \(A^{k\times \ell}\) should be \(A^{k+\ell}\).

• p. 294, line −1: Delete one of the extra occurrences of \(\frac{\partial \phi \cdots \partial \phi}{\partial y_1 \cdots \partial y_l}\).
Example. The map $F(x,t) = \cos^2 \left(\frac{\pi}{2} t \right) x + \sin^2 \left(\frac{\pi}{2} t \right) \frac{x}{\|x\|}$ is a deformation retraction from the punctured plane $\mathbb{R}^2 - \{0\}$ to the unit circle S^1.

Example. The map F in Example 27.6 is a deformation retraction from \mathbb{R}^n to a singleton $\{p\}$.