
Chapter 1

De Rham Theory

§1 Review of Manifolds

To understand this course, it is helpful to have some prior exposure to the theory of

smooth manifolds. The reference [4] contains all the background needed. For the

benefit of the reader, we review in this section, mostly without proofs, some of the

definitions and basic properties of smooth manifolds.

1.1 Manifolds and Smooth Maps

We will be following the convention of classical differential geometry in which vec-

tor fields take on subscripts, differential forms take on superscripts, and coefficient

functions can have either superscripts or subscripts depending on whether they are

coefficient functions of vector fields or of differential forms. See ([4], §4.7) for a

more detailed explanation of this convention.

A manifold is a higher-dimensional analogue of a smooth curve or surface. Its

prototype is the Euclidean space Rn, with coordinates r1, . . . ,rn. Let U be an open

subset of Rn. A function f = ( f 1, . . . , f m) : U → Rm is smooth on U if the partial

derivatives ∂ k f/∂ r j1 · · ·∂ r jk exist on U for all integers k ≥ 1 and all j1, . . . , jk. In

this book we use the words “smooth” and “C∞” interchangeably.

Definition. A topological space M is locally Euclidean of dimension n if, for every

point p in M, there is a homeomorphism φ of a neighborhood U of p with an open

subset of Rn. Such a pair (U,φ : U → Rn) is called a coordinate chart or simply a

chart. If p ∈U , then we say that (U,φ) is a chart about p. A collection of charts

{(Uα ,φα : Uα → Rn)} is C∞ compatible if for every α and β , the transition map

φα ◦ φ−1
β : φβ (Uα ∩Uβ )→ φα (Uα ∩Uβ )

is C∞. A collection of C∞ compatible charts {(Uα ,φα : Uα → Rn)} that cover M is

called a C∞ atlas. A C∞ atlas is said to be maximal if it contains every chart that is

C∞ compatible with all the charts in the atlas.
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Definition. A topological manifold is a Hausdorff, second countable, locally Eu-

clidean topological space. By “second countable,” we mean that the space has a

countable basis of open sets. A smooth or C∞ manifold is a pair consisting of a

topological manifold M and a maximal C∞ atlas {(Uα ,φα)} on M. In this book all

manifolds will be smooth manifolds.

In the definition of a manifold, the Hausdorff condition ensures that the topology

is not too small, for there must be enough open sets to separate points. The second

countability condition ensures that the topology is not too large, for it must be gen-

erated by a countable basis of open sets. With these two conditions, the topology of

a manifold achieves a happy medium.

In practice, to show that a Hausdorff, second countable topological space is a

smooth manifold it suffices to exhibit a C∞ atlas, for by Zorn’s lemma every C∞ atlas

is contained in a unique maximal C∞ atlas.

Example. Let S1 be the circle defined by x2+y2 = 1 in R2, with open sets (see Figure

1.1)

U+
x = {(x,y) ∈ S1 | x > 0},

U−x = {(x,y) ∈ S1 | x < 0},
U+

y = {(x,y) ∈ S1 | y > 0},
U−y = {(x,y) ∈ S1 | y < 0}.

bc bc

bc

bc

S1 U−y

U+
y

U−x U+
x

Fig. 1.1. A C∞ atlas on S1.

Then {(U+
x ,y),(U−x ,y),(U+

y ,x),(U−y ,x)} is a C∞ atlas on S1. For example, the tran-

sition map from

the open interval (0,1) = x(U+
x ∩U−y )→ y(U+

x ∩U−y ) = (−1,0)

is y =−
√

1− x2, which is C∞ on its domain (0,1).

Definition. A map F : M → Rn on a manifold M is said to be smooth or C∞ at

p ∈M if there is a chart (U,φ) of M about p such that
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F ◦ φ−1 : Rm ⊃ φ(U)→ Rn

is C∞. The map F : M→ Rn is said to be smooth or C∞ on M if it is C∞ at every

point of M.

Definition. An algebra over R is a vector space together with a bilinear map

µ : A×A→ A, called multiplication, such that under addition and multiplication, A

becomes a ring.

Under addition, multiplication, and scalar multiplication, the set of all C∞ func-

tions f : M→R is an algebra over R, denoted C∞(M).

Definition. A map F : N→M between two manifolds is smooth or C∞ at p ∈ N if

there is a chart (U,φ) about p∈N and a chart (V,ψ) about F(p)∈M with V ⊃ F(U)
such that the composite map ψ ◦ F ◦ φ−1 : Rn ⊃ φ(U)→ ψ(V )⊂Rm is C∞ at φ(p).
A smooth map F : N→M is called a diffeomorphism if it has a smooth inverse, i.e.,

a smooth map G : M→ N such that F ◦ G = 1M and G ◦ F = 1N .

A typical matrix in linear algebra is usually an m× n matrix, with m rows and

n columns. Such a matrix represents a linear transformation F : Rn→ Rm. For this

reason, we usually write a C∞ map as F : N→M, rather than F : M→ N.

1.2 Tangent Vectors

The derivatives of a function f at a point p in Rn depend only on the values of f in a

small neighborhood of p. To make precise what is meant by a “small” neighborhood,

we introduce the concept of the germ of a function.

Definition. Decree two C∞ functions f : U → R and g : V → R defined on neigh-

borhoods U and V of p to be equivalent if there is a neighborhood W of p contained

in both U and V such that f = g on W . The equivalence class of f : U → R is called

the germ of f at p.

It is easy to verify that addition, multiplication, and scalar multiplication are

well-defined operations on C∞
p (M), the set of germs of C∞ real-valued functions at p

in M. These three operations make C∞
p (M) into an algebra over R.

Definition. A derivation at a point p of a manifold M is a linear map D : C∞
p (M)→

R that satisfies the Leibniz rule at p: for any f ,g ∈C∞
p (M),

D( f g) = (D f )g(p)+ f (p)Dg. (1.1)

A derivation at p is also called a tangent vector at p. The set of all tangent vectors

at p is a vector space TpM, called the tangent space of M at p.

Note that on the right-hand side of (1.1), the functions f and g are evaluated at p.

Example. If r1, . . . ,rn are the standard coordinates on Rn and p ∈ Rn, then the usual

partial derivatives
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∂

∂ r1

∣∣∣∣
p

, . . . ,
∂

∂ rn

∣∣∣∣
p

are tangent vectors at p that form a basis for the tangent space Tp(Rn).

At a point p in a coordinate chart (U,φ) = (U,x1, . . . ,xn), where xi = ri ◦ φ , we

define the coordinate vectors ∂/∂xi|p ∈ TpM by

∂

∂xi

∣∣∣∣
p

f =
∂

∂ ri

∣∣∣∣
φ(p)

f ◦ φ−1 for any f ∈C∞
p (M).

If F : N→M is a C∞ map, then at each point p ∈ N its differential

F∗,p : TpN→ TF(p)M, (1.2)

is the linear map defined by

(F∗,pXp)(h) = Xp(h ◦ F)

for Xp ∈ TpN and h ∈C∞
F(p)(M). Usually the point p is clear from the context and we

write F∗ instead of F∗,p. It is easy to verify that if F : N→M and G : M→ P are C∞

maps, then for any p ∈ N,

(G ◦ F)∗,p = G∗,F(p) ◦ F∗,p,

or, suppressing the points,

(G ◦ F)∗ = G∗ ◦ F∗.

When written in local coordinates, this statement is equivalent to the chain rule in

multivariable calculus [4, §8.5].

Definition. A vector field X on a manifold M is the assignment of a tangent vector

Xp ∈ TpM to each point p ∈M.

At every p in a chart (U,x1, . . . ,xn), since the coordinate vectors ∂/∂xi|p form a

basis of the tangent space TpM, the vector Xp can be written as a linear combination

Xp = ∑
i

ai(p)
∂

∂xi

∣∣∣∣
p

with ai(p) ∈R.

As p varies over U , the coefficients ai(p) become functions on U .

Definition. A vector field X is said to be smooth or C∞ if every point has a chart

(U,x1, . . . ,xn) of M about it on which the coefficient functions ai in X = ∑ai∂/∂xi

are C∞.

We denote the set of all C∞ vector fields on M by X(M). It is a vector space under

the addition of vector fields and scalar multiplication by real numbers.
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Definition. For a smooth vector field X ∈X(M) and a smooth function f ∈C∞(M),
we define X f to be the smooth function on M given pointwise by (X f )(p) = Xp f for

all p ∈M.

Definition. A frame of vector fields on an open set U ⊂M is a collection of vector

fields X1, . . . ,Xn on U such that at each point p ∈ U , the vectors (X1)p, . . . ,(Xn)p

form a basis for the tangent space TpM.

For example, in a coordinate chart (U,x1, . . . ,xn), the coordinate vector fields

∂/∂x1, . . . ,∂/∂xn form a frame of vector fields on U .

If f : N→M is a C∞ map, its differential f∗,p : TpN→ Tf (p)M pushes forward a

tangent vector at a point in N to a tangent vector in M. It should be noted, however,

that in general there is no push-forward map f∗ : X(N)→X(M) for vector fields. For

example, when f is not one-to-one, say f (p) = f (q) for p 6= q in N, it may happen

that for some X ∈ X(N), f∗,pXp 6= f∗,qXq; in this case, there is no way to define f∗X
so that ( f∗X) f (p) = f∗,pXp for all p ∈ N. Similarly, if f : N → M is not onto, then

there is no natural way to define f∗X at a point of M not in the image of f . Of course,

if f : N→M is a diffeomorphism, then f∗ : X(N)→ X(M) is well defined.

1.3 Differential Forms

For k ≥ 1, a k-form or a form of degree k on M is the assignment to each p in M of

an alternating k-linear function

ωp : TpM×·· ·×TpM︸ ︷︷ ︸
k copies

→R.

Here “alternating” means that for every permutation σ of {1,2, . . . ,k} and v1, . . . ,vk ∈
TpM,

ωp(vσ(1), . . . ,vσ(k)) = (sgnσ)ωp(v1, . . . ,vk), (1.3)

where sgnσ , the sign of the permutation σ , is ±1 depending on whether σ is even

or odd. We define a 0-form to be the assignment of a real number to each p ∈M; in

other words, a 0-form on M is simply a real-valued function on M. When k = 1, the

condition of being alternating is vacuous. Thus, a 1-form on M is the assignment of a

linear function ωp : TpM→R to each p in M. For k < 0, a k-form is 0 by definition.

A k-linear function on a vector space V is also called a k-tensor on V . As above,

a 0-tensor is a constant and a 1-tensor on V is a linear function f : V → R. Let

Ak(V ) be the vector space of all alternating k-tensors on V . Then A0(V ) = R and

A1(V ) =V∨ := Hom(V,R), the dual vector space of V . In this language a k-form on

M is the assignment of an alternating k-tensor ωp ∈ Ak(TpM) to each point p in M.

Definition. Let Sk be the group of all permutations of {1,2, . . . ,k}. A (k, ℓ)-shuffle

is a permutation σ ∈ Sk+ℓ such that

σ(1)< · · ·< σ(k) and σ(k+ 1)< · · ·< σ(k+ ℓ).
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The wedge product of an alternating k-tensor α and an alternating ℓ-tensor β on a

vector space V is by definition the alternating (k+ ℓ)-tensor

(α ∧β )(v1, . . . ,vk+ℓ) = ∑(sgnσ)α(vσ(1), . . . ,vσ(k))β (vσ(k+1), . . . ,vσ(k+ℓ)), (1.4)

where the sum is over all (k, ℓ)-shuffles.

For example, if α and β are alternating 1-tensors, then

(α ∧β )(v1,v2) = α(v1)β (v2)−α(v2)β (v1).

The wedge of an alternating 0-tensor, i.e., a constant c, with another alternating

tensor β is simply scalar multiplication. In this case, in keeping with the traditional

notation for scalar multiplication, we often replace the wedge by a dot or even by

nothing: c∧β = c ·β = cβ .

Proposition 1.1. The wedge product∧ is bilinear, associative, and graded-commutative

in its two arguments. Graded-commutativity means that for two alternating tensors

α , β on a vector space V ,

α ∧β = (−1)degα degβ β ∧α.

Proposition 1.2. If α1, . . . ,αn is a basis for the 1-covectors on a vector space V ,

then a basis for the k-covectors on V is the set

{α i1 ∧·· ·∧α ik | 1≤ i1 < · · ·< ik ≤ n}.

A k-tuple of integers I = (i1, . . . , ik) is called a multi-index. If i1 ≤ ·· · ≤ ik, we

call I an ascending multi-index, and if i1 < · · · < ik, we call I a strictly ascending

multi-index. To simplify the notation, we will write α I = α i1 ∧·· ·∧α ik .

As noted earlier, for a point p in a coordinate chart (U,x1, . . . ,xn), a basis for the

tangent space TpM is

∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

.

Let (dx1)p, . . . ,(dxn)p be the dual basis for the cotangent space A1(TpM) = T ∗p M,

i.e.,

(dxi)p

(
∂

∂x j

∣∣∣∣
p

)
= δ i

j.

By Proposition 1.2, if ω is a k-form on M, then at each p ∈U , ωp is a linear combi-

nation:

ωp = ∑aI(p)(dxI)p = ∑aI(p)(dxi1)p∧·· ·∧ (dxik )p.

Definition. A k-form ω is smooth if for every point p ∈ M, there is a chart

(U,x1, . . . ,xn) about p such that on U the coefficients aI : U → R of ω = ∑aIdxI

are smooth. By differential k-forms, we will mean smooth k-forms on a manifold.
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Definition. A frame of differential k-forms on an open set U ⊂M is a collection

of differential k-forms ω1, . . . ,ωr on U such that at each point p ∈U , the alternating

k-tensors (ω1)p, . . . ,(ωr)p form a basis for the vector space Ak(TpM) of alternating

k-tensors on the tangent space at p.

For example, on a coordinate chart (U,x1, . . . ,xn), the k-forms dxI = dxi1 ∧·· ·∧
dxik , 1≤ i1 < · · ·< ik ≤ n, constitute a frame of differential k-forms on U .

Definition. A subset B of a left R-module V is called a basis if every element of

V can be written uniquely as a finite linear combination ∑ribi, where ri ∈ R and

bi ∈ B. An R-module is said to be free if it has a basis, and if the basis is finite with

n elements, then the free R-module is said to be of rank n.

It can be shown that if a free R-module has a finite basis, then any two bases have

the same number of elements, so that the rank is well-defined. We denote the rank

of V by rkV .

Let Ωk(M) denote the vector space of C∞ k-forms on M and let

Ω∗(M) =
n⊕

k=0

Ωk(M).

If (U,x1, . . . ,xn) is a coordinate chart on M, then Ωk(U) is a free module over C∞(U)
of rank

(
n
k

)
, with basis dxI as above.

Definition. An algebra A is said to be graded if it can be written as a direct sum

A =
⊕∞

k=0 Ak of vector spaces such that under multiplication, Ak · Aℓ ⊂ Ak+ℓ. A

graded algebra A =
⊕∞

k=0 Ak is said to be a graded commutative algebraa if for all

x ∈ Ak and y ∈ Aℓ,

x · y = (−1)kℓy · x.

The wedge product ∧ makes Ω∗(M) into a graded cummutative algebra over R.

1.4 Exterior Differentiation

On any manifold M there is a linear operator d : Ω∗(M)→ Ω∗(M), called exterior

differentiation, uniquely characterized by three properties:

(1) d is an antiderivation of degree 1, i.e., d increases the degree by 1 and for ω ∈
Ωk(M) and τ ∈Ωℓ(M),

d(ω ∧ τ) = dω ∧ τ +(−1)kω ∧dτ;

(2) d2 = d ◦ d = 0;

(3) On 0-forms, the exterior derivative coincides with the differential: for a 0-form

f ∈C∞(M) and a vector field X ∈ X(M), we have (d f )(X) = X f .
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By induction the antiderivation property (1) extends to more than two factors; for

example,

d(ω ∧ τ ∧η) = dω ∧ τ ∧η +(−1)degω ω ∧dτ ∧η +(−1)degω∧τ ω ∧ τ ∧dη .

The existence and uniqueness of exterior differentiation on a general manifold is

established in [4, Section 19]. To develop some facility with this operator, we will

examine the case when M is covered by a single coordinate chart (U,x1, . . . ,xn). This

case will be used to define and compute locally throughout the rest of the book.

Proposition 1.3. Let (U,x1, . . . ,xn) be a coordinate chart. Suppose d : Ω∗(U)→
Ω∗(U) is an exterior differentiation. Then

(i) for any f ∈Ω0(U),

d f = ∑
∂ f

∂xi
dxi;

(ii) d(dxI) = 0;

(iii) for any aI dxI ∈Ωk(M), d(aI dxI) = daI ∧dxI .

Proof. (i) Since (dx1)p, . . . ,(dxn)p is a basis of 1-covectors at each point p ∈U ,

(d f )p = ∑ai(p)(dxi)p.

We may write, suppressing p,

d f =∑ai dxi.

Applying both sides to the vector field ∂/∂xi gives

d f

(
∂

∂x j

)
= ∑ai dxi

(
∂

∂x j

)
= ∑aiδ

i
j = a j.

On the other hand, by property (3) of d,

d f

(
∂

∂x j

)
=

∂

∂x j
( f ).

Hence, a j = ∂ f/∂x j and d f = ∑(∂ f/∂x j)dx j.

(ii) By the antiderivation property of d,

d(dxI) = d(dxi1 ∧·· ·∧dxik) = ∑
j

(−1) j−1dxi1 ∧·· ·∧ddxi j ∧·· ·∧dxik

= 0 since d2 = 0.

(iii) By the antiderivation property of d,

d
(
aI dxI

)
= daI ∧dxI + aI d(dxI)

= daI ∧dxI since d(dxI) = 0. ⊓⊔
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Proposition 1.3 proves the uniqueness of exterior differentiation on a coordinate

chart (U,x1, . . . ,xn). To prove its existence, we define d by two of the formulas of

Proposition 1.3:

(i) if f ∈Ω0(U), then d f = ∑(∂ f/∂xi)dxi;

(iii) if ω = ∑aI dxI ∈Ωk(U) for k ≥ 1, then dω = ∑daI ∧dxI .

Next we check that so defined, d satisfies the three properties of exterior differ-

entiation.

(1) For ω ∈Ωk(U) and τ ∈Ωℓ(U),

d(ω ∧ τ) = (dω)∧ τ +(−1)kω ∧dτ. (1.5)

Proof. Suppose ω = ∑aI dxI and τ = ∑bJ dxJ . On functions, d( f g) = (d f )g +
f (dg) is simply another manifestation of the ordinary product rule, since

d( f g) = ∑
∂

∂xi
( f g)dxi

= ∑
(

∂ f

∂xi
g+ f

∂g

∂xi

)
dxi

=

(
∑

∂ f

∂xi
dxi

)
g+ f ∑

∂g

∂xi
dxi

= (d f )g+ f dg.

Next suppose k ≥ 1. Since the exterior d is linear and the wedge product ∧ is

bilinear over R, we may assume that ω = aI dxI and τ = bJ dxJ each consist of a

single term. Then

d(ω ∧ τ) = d(aIbJ dxI ∧dxJ)

= d(aIbJ)∧dxI ∧dxJ (definition of d)

= (daI)bJ ∧dxI ∧dxJ + aI dbJ ∧dxI ∧dxJ

(by the degree 0 case)

= daI ∧dxI ∧bJ dxJ +(−1)kaI dxI ∧dbJ ∧dxJ

= dω ∧ τ +(−1)kω ∧dτ. ⊓⊔

(2) d2 = 0 on Ωk(U).

Proof. This is a consequence of the fact that the mixed partials of a function are

equal. For f ∈Ω0(U),

d2 f = d

(
n

∑
i=1

∂ f

∂xi
dxi

)
=

n

∑
j=1

n

∑
i=1

∂ 2 f

∂x j∂xi
dx j ∧dxi.

In this double sum, the factors ∂ 2 f/∂x j∂xi are symmetric in i, j, while dx j ∧dxi are

skew-symmetric in i, j. Hence, for each pair i < j there are two terms
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∂ 2 f

∂xi∂x j
dxi∧dx j,

∂ 2 f

∂x j∂xi
dx j ∧dxi

that add up to zero. It follows that d2 f = 0.

For ω = ∑aI dxI ∈Ωk(U), where k≥ 1,

d2ω = d
(
∑daI ∧dxI

)
(by the definition of dω)

= ∑(d2aI)∧dxI + daI ∧d(dxI)

= 0.

In this computation, d2aI = 0 by the degree 0 case, and d(dxI) = 0 follows as in the

proof of Proposition 1.3(ii) by the antiderivation property and the degree 0 case.

(3) Suppose X = ∑a j ∂/∂x j. Then

(d f )(X) =

(
∑

∂ f

∂xi
dxi

)(
∑a j ∂

∂x j

)
= ∑ai ∂ f

∂xi
= X( f ). ⊓⊔

1.5 Exterior Differentiation on R3

On R3 with coordinates x,y,z, every smooth vector field X is uniquely a linear com-

bination

X = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂ z

with coefficient functions a,b,c ∈Ω0(R3). Thus, the vector space X(R3) of smooth

vector fields on R3 is a free module of rank 3 over Ω0(R3) with basis {∂/∂x,∂/∂y,

∂/∂ z}. Similarly, Ω3(R3) is a free module of rank 1 over Ω0(R3) with basis {dx∧
dy∧ dz}, while Ω1(R3) and Ω2(R3) are free modules of rank 3 over Ω0(R3) with

bases {dx,dy,dz} and {dy∧ dz, dz∧ dx, dx∧ dy} respectively. So the following

identifications are possible:

functions = 0-forms ≃ 3-forms

f = f ↔ f dx∧dy∧dz

and

vector fields ≃ 1-forms ≃ 2-forms

X = 〈a,b,c〉 ↔ adx+ bdy+ cdz ↔ ady∧dz+ bdz∧dx+ cdx∧dy.

We will write fx = ∂ f/∂x, fy = ∂ f/∂y, and fz = ∂ f/∂ z. On functions,

d f = fx dx+ fy dy+ fz dz.

On 1-forms,

d(adx+ bdy+ cdz) = (cy− bz)dy∧dz− (cx− az)dz∧dx+(bx− ay)dx∧dy.

On 2-forms,
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d(ady∧dz+ bdz∧dx+ cdx∧dy= (ax + by + cz)dx∧dy∧dz.

Identifying forms with vector fields and functions,

d(0-form)↔ gradient of a function,

d(1-form)↔ curl of a vector field,

d(2-form)↔ divergence of a vector field.

1.6 Pullback of Differential Forms

Unlike vector fields, which in general cannot be pushed forward under a C∞ map,

differential forms can always be pulled back. Let F : N → M be a C∞ map. The

pullback of a C∞ function f on M is the C∞ function F∗ f := f ◦ F on N. This

defines the pullback on C∞ 0-forms. For k > 0, the pullback of a k-form ω on M is

the k-form F∗ω on N defined by

(F∗ω)p(v1, . . . ,vk) = ωF(p)(F∗,pv1, . . . ,F∗,pvk)

for p ∈ N and v1, . . . ,vk ∈ TpM. From this definition, it is not obvious that the pull-

back F∗ω of a C∞ form ω is C∞. To show this, we first derive a few basic properties

of the pullback.

Proposition 1.4. Let F : N→M be a C∞ map of manifolds. If ω and τ are k-forms

and σ is an ℓ-form on M, then

(i) F∗(ω + τ) = F∗ω +F∗τ;

(ii) for any real number a, F∗(aω) = aF∗ω;

(iii) F∗(ω ∧ τ) = F∗ω ∧F∗τ;

(iv) for any C∞ function h, dF∗h = F∗dh.

Proof. The first three properties (i), (ii), (iii) follow directly from the definitions. To

prove (iv), let p ∈ N and Xp ∈ TpN. Then

(dF∗h)p(Xp) = Xp(F
∗h) (property (3) of d)

= Xp(h ◦ F) (definition of F∗h)

and

(F∗dh)p(Xp) = (dh)F(p)(F∗,pXp) (definition of F∗)

= (F∗,pXp)h (property (3) of d)

= Xp(h ◦ F). (definition of F∗,p)

Hence,

dF∗h = F∗dh. ⊓⊔
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We now prove that the pullback of a C∞ form is C∞. On a coordinate chart

(U,x1, . . . ,xn) in M, a C∞ k-form ω can be written as a linear combination

ω = ∑aI dxi1 ∧·· ·∧dxik ,

where the coefficients aI are C∞ functions on U . By the preceding proposition,

F∗ω =∑(F∗aI)d(F∗xi1)∧·· ·∧d(F∗xik )

=∑(aI ◦ F)d(xi1 ◦ F)∧·· ·∧d(xik ◦ F),

which shows that F∗ω is C∞, because it is a sum of products of C∞ functions and C∞

1-forms.

Proposition 1.5. Suppose F : N→M is a smooth map. On C∞ k-forms, dF∗ = F∗d.

Proof. Let ω ∈ Ωk(M) and p ∈M. Choose a chart (U,x1, . . . ,xn) about p in M. On

U ,

ω = ∑aI dxi1 ∧·· ·∧dxik .

As computed above,

F∗ω =∑(aI ◦ F)d(xi1 ◦ F)∧·· ·∧d(xik ◦ F).

Hence,

dF∗ω = ∑d(aI ◦ F)∧d(xi1 ◦ F)∧·· ·∧d(xik ◦ F)

= ∑d(F∗aI)∧d(F∗xi1)∧·· ·∧d(F∗xik)

= ∑F∗daI ∧F∗dxi1 ∧·· ·∧F∗dxik

(dF∗ = F∗d on functions by Prop. 1.4(iv))

= ∑F∗(daI ∧dxi1 ∧·· ·∧dxik)

(F∗ preserves the wedge product by Prop. 1.4(iii))

= F∗dω . ⊓⊔

In summary, for any C∞ map F : N→M, the pullback map F∗ : Ω∗(M)→Ω∗(N)
is an algebra homomorphism that commutes with the exterior derivative d.

Example 1.6 (Pullback under the inclusion of an immersed submanifold). Let N and

M be manifolds. A C∞ map f : N → M is called an immersion if for all p ∈ N,

the differential f∗,p : TpN → Tf (p)M is injective. A subset S of M with a manifold

structure such that the inclusion map i : S→M is an immersion is called an immersed

submanifold of M. An example is the image of a line with irrational slope in the torus

R2/Z2. An immersed submanifold need not have the subspace topology.

If ω ∈Ωk(M), p ∈ S, and v1, . . . ,vk ∈ TpS, then by the definition of the pullback,

(i∗ω)p(v1, . . . ,vk) = ωi(p)(i∗v1, . . . , i∗vk) = ωp(v1, . . . ,vk).

Thus, the pullback of ω under the inclusion map i is simply the restriction of ω to

the submanifold S. We also adopt the more suggestive notation ω |S for i∗ω .
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Problems

1.1. Connected components

(a) The connected component of a point p in a topological space S is the largest

connected subset of S containing p. Show that the connected components of a

manifold are open.

(b) Let Q be the set of rational numbers considered as a subspace of the real line R.

Show that the connected component of p ∈ Q is the singleton set {p}, which is

not open in Q. Which condition in the definition of a manifold does Q violate?

1.2. Connected components versus path components

The path component of a point p in a topological space S is the set of all points q∈ S

that can be connected to p via a continuous path. Show that for a manifold, the path

components are the same as the connected components.


