
COMPUTING THE GYSIN MAP USING FIXED POINTS

LORING W. TU

ABSTRACT. This article shows how the localization formula in equivariant cohomology pro-

vides a systematic method for calculating the Gysin homomorphism in the ordinary cohomol-

ogy of a fiber bundle. As examples, we recover classical pushforward formulas for generalized

flag bundles. Our method extends the classical formulas to fiber bundles with equivariantly for-

mal fibers. We also discuss a generalization, to compact Lie groups, of the Lagrange–Sylvester

symmetrizer and the Jacobi symmetrizer in interpolation theory.

In enumerative geometry, to count the number of objects satisfying a set of conditions, one

method is to represent the objects satisfying each condition by cycles in a parameter space M

and then to compute the intersection of these cycles in M. When the parameter space M is a

compact oriented manifold, by Poincaré duality, the intersection of cycles can be calculated

as a product of classes in the rational cohomology ring. Sometimes, a cycle B in M is the

image f (A) of a cycle A in another compact oriented manifold E under a map f : E →M. In

this case the homology class [B] of B is the image f∗[A] of the homology class of A under the

induced map f∗ : H∗(E)→ H∗(M) in homology, and the Poincaré dual ηB of B is the image of

the Poincaré dual ηA of A under the map H∗(E)→ H∗(M) in cohomology corresponding to

the induced map f∗ in homology. This map in cohomology, also denoted by f∗, is called the

Gysin map, the Gysin homomorphism, or the pushforward map in cohomology. It is defined

by the commutative diagram

Hk(E)
f∗ //

P.D. ≃

��

Hk−(e−m)(M)

P.D.≃

��
He−k(E)

f∗

// He−k(M),

where e and m are the dimensions of E and M respectively and the vertical maps are the

Poincaré duality isomorphisms. The calculation of the Gysin map for various flag bundles

plays an important role in enumerative algebraic geometry, for example in determining the

cohomology classes of degeneracy loci ([22], [19], [15], and [13, Ch. 14]). Other applications

of the Gysin map, for example, to the computation of Thom polynomials associated to Thom–

Boardman singularities and to the computation of the dual cohomology classes of bundles of

Schubert varieties, may be found in [12].

The case of a projective bundle associated to a vector bundle is classical [1, Eq. 4.3, p. 318].

Pushforward formulas for a Grassmann bundle and for a complete flag bundle are described

Date: October 21, 2012, version 17.

2000 Mathematics Subject Classification. Primary: 55R10, 55N25, 14C17; Secondary: 14M17.

Key words and phrases. Atiyah–Bott–Berline–Vergne localization formula, equivariant localization formula,

pushforward, Gysin map, equivariant cohomology, Lagrange–Sylvester symmetrizer, Jacobi symmetrizer.

1



2 LORING W. TU

in Pragacz [23, Lem. 2.5 and 2.6] and Fulton and Pragacz [14, Section 4.1]. For a connected

reductive group G with a Borel subgroup B and a parabolic subgroup P containing B, Akyildiz

and Carrell [2] found a pushforward formula for the map G/B→ G/P. For a nonsingular G-

variety X such that X → X/G is a principal G-bundle, Brion [8] proved using representation

theory a pushforward formula for the flag bundle X/B→ X/P.

The pushforward map for a fiber bundle makes sense more generally even if E and M are

not manifolds ([5, §8] or [10]); for example, E and M may be only CW-complexes, so long

as the fiber F is a compact oriented manifold. For G a compact connected Lie group, T a

maximal torus, and BG, BT their respective classifying spaces, Borel and Hirzebruch found in

[5, Th. 20.3, p. 316] a pushforward formula for the universal bundle BT → BG with fiber G/T .

Unless otherwise specified, by cohomology we will mean singular cohomology with rational

coefficients. A G-space F is said to be equivariantly formal if the canonical restriction map

H∗G(F)→ H∗(F) from its equivariant cohomology to its ordinary cohomology is surjective.

The main result of this paper, Theorem 5, shows that if the fiber F of a fiber bundle E →M is

an equivariantly formal manifold and has finite-dimensional cohomology, then the Gysin map

of the fiber bundle can be computed from the equivariant localization formula of Atiyah–Bott–

Berline–Vergne for a torus action ([3], [4]). This provides a systematic method for calculating

the Gysin map. In particular, we recover all the pushforward formulas mentioned above, but in

the differentiable category instead of the algebraic category.

Equivariant formality describes a large class of G-manifolds whose equivariant cohomology

behaves nicely [17, note 5, pp. 185–186]. These manifolds include all those whose cohomology

vanishes in odd degrees. In particular, a homogeneous space G/H , where G is a compact Lie

group and H a closed subgroup of maximal rank, is equivariantly formal.

In fact, the technique of this article applies more generally to fiber bundles whose fibers

are not equivariantly formal. Let FG be the homotopy quotient of the space F by the group

G and π : FG→ BG the associated fiber bundle with fiber F . For any fiber bundle f : E →M

with fiber F and structure group G, there is a bundle map (h,h) from the bundle E→M to the

bundle FG→ BG. We say that a class in H∗(E) is an equivariant fiber class if it is in the image

of h∗ : H∗G(F)→ H∗(E). In Theorem 6 we compute the pushforward of an equivariant fiber

class of any fiber bundle f : E→M such that the pullback f ∗ : H∗(M)→ H∗(E) is injective.

Using the residue symbol, Damon in [11] computed the Gysin map for classical flag bundles,

fiber bundles whose fibers are flag manifolds of the classical compact groups O(n), U(n), and

Sp(n). Since these flag manifolds are equivariantly formal, our Theorem 3 includes these cases,

although in a different form. In Section 11, we work out the case of U(n) as an example.

The pushforward formula in Theorem 5 suggests a geometric interpretation and a gener-

alization of certain symmetrizing constructions in algebra. To every compact connected Lie

group G of rank n and closed subgroup H of maximal rank, we associate a symmetrizing op-

erator on the polynomial ring in n variables. When G is the unitary group U(n) and H is the

parabolic subgroup U(k)×U(n− k) or the maximal torus U(1)× ·· · ×U(1) (n times), this

construction specializes to the Lagrange–Sylvester symmetrizer and the Jacobi symmetrizer of

interpolation theory respectively.

This article computes the Gysin map of a fiber bundle with equivariantly formal fibers. In

the companion article [21], we compute the Gysin map of a G-equivariant map for a compact

connected Lie group G.



COMPUTING THE GYSIN MAP USING FIXED POINTS 3

It is a pleasure to acknowledge the support of the Tufts Faculty Research Award Committee

in 2007–2008 and the hospitality of the Institut Henri Poincaré, the Université de Lille, and the

Institut de Mathématiques de Jussieu. I thank Michel Brion for explaining his work and for

generously sharing some key ideas with me, and Jeffrey D. Carlson for careful proofreading

and valuable feedback.

1. UNIVERSAL FIBER BUNDLES

We work in the continuous category until Section 5, at which point we will switch to the

smooth category. In this section, G is a topological group and f : E →M is a continuous fiber

bundle with fiber F and structure group G. This means G acts on F on the left and there is a

principal G-bundle P→M such that E→M is the associated fiber bundle P×G F→M. Recall

that the mixing space P×G F is the quotient of P×F by the diagonal action of G:

g · (p,x) = (pg−1,gx) for (p,x) ∈ P×F and g ∈G. (1.1)

We denote the equivalence class of (p,x) by [p,x].
Let EG→ BG be the universal principal G-bundle. One can form the associated fiber bundle

π : EG×G F→ BG. The space FG := EG×G F is called the homotopy quotient of F by G, and

its cohomology H∗(FG) is by definition the equivariant cohomology H∗G(F) of the G-space F .

The following lemma shows that the bundle π : FG→ BG can serve as a universal fiber bundle

with fiber F and structure group G.

Lemma 1. For any fiber bundle f : E → M with fiber F and structure group G, there is a

bundle map (h,h) from f : E →M to π : FG→ BG such that the bundle E is isomorphic to the

pullback bundle h∗(FG).

Proof. The classifying map h of the principal bundle P→M in the diagram

P

��

// EG

��
M

h
// BG

induces a map of fiber bundles

E = P×G F

f

��

h // EG×G F

π
��

M
h

// BG.

= FG

(1.2)

Recall that the fiber product over a space B of two maps α : M→ B and β : N→ B is

M×B N := {(x,y) ∈M×N | α(x) = β (y)}

and that the total space of the pullback to M of a bundle β : N → B via a map α : M → B is

α∗N := M×B N. If N is a right G-space for some topological group G, then so is the fiber

product M×B N, with (m,n)g = (m,ng) for (m,n) ∈M×B N and g ∈ G.
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Since the principal bundle P is isomorphic to the pullback h∗(EG) of EG by h, it is easily

verified that E is isomorphic to the pullback h∗(FG) of FG by h:

E = P×G F ≃ h∗(EG)×G F = (M×BG EG)×G F

≃M×BG (EG×G F) = M×BG FG = h∗(FG).

(In the computation above, the notation ×BG denotes the fiber product and the notation ×G

denotes the mixing construction, and the isomorphism

(M×BG EG)×G F ≃M×BG (EG×G F)

is given by
[

(m,e),x
]

←→
(

m, [e,x]
)

for m ∈M, e ∈ EG, and x ∈ F .) �

2. EQUIVARIANT FORMALITY

Let G be a topological group acting on a topological space X , and XG the homotopy quotient

of X by G. Since XG fibers over the classifying space BG with fiber X , there is an inclusion

map X →֒ XG and correspondingly a restriction homomorphism H∗G(X)→ H∗(X) in cohomol-

ogy. As stated in the introduction, the G-space X is defined to be equivariantly formal if this

homomorphism H∗G(X)→H∗(X) is surjective; in this case, we also say that every cohomology

class on X has an equivariant extension.

The following proposition gives a large class of equivariantly formal spaces.

Proposition 2. Let G be a connected Lie group. A G-space X whose cohomology vanishes in

odd degrees is equivariantly formal.

Proof. By the homotopy exact sequence of the fiber bundle EG→ BG with fiber G, the con-

nectedness of G implies that BG is simply connected. Since XG→ BG is a fiber bundle with

fiber X over a simply connected base space, the E2-term of the spectral sequence of the fiber

bundle XG→ BG is the tensor product

E
p,q
2 = H p(BG)⊗Q Hq(X)

(see [6, Th. 15.11]). Recall that the cohomology ring H∗(BG) is a subring of a polynomial

ring with even-degree generators [24, §4]. Thus, H p(BG) = 0 for all odd p. Together with

the hypothesis that Hq(X) = 0 for all odd q, this means that the odd columns and odd rows of

the Er-terms will be zero for all r. For r even, dr : E
p,q
r → E

p+r,q−r+1
r+1 changes the row parity

(moves from an odd row to an even row and vice versa); for r odd, dr changes the column

parity. Thus, all the differentials dr for r ≥ 2 vanish, so the spectral sequence degenerates at

the E2-term and additively

H∗G(X) = H∗(XG) = E∞ = E2 = H∗(BG)⊗Q H∗(X).

This shows that H∗G(X)→ H∗(X) is surjective, so X is equivariantly formal; in fact, for any

α ∈ H∗(X), the element 1⊗α ∈ H∗(BG)⊗Q H∗(X) = H∗G(X) maps to α . �
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3. FIBER BUNDLES WITH EQUIVARIANTLY FORMAL FIBERS

In this section we compute the cohomology ring with rational coefficients of the total space

of a fiber bundle with equivariantly formal fibers. We assume tacitly that all spaces have a

basepoint and that all maps are basepoint-preserving. By the fiber of a fiber bundle over a

space M, we mean the fiber above the basepoint of M.

For any continuous fiber bundle f : E → M with fiber F and group G, the diagram (1.2)

induces a commutative diagram of ring homomorphisms

H∗(E) H∗G(F)
h∗oo

H∗(M)

f ∗

OO

H∗(BG).
h∗

oo

π∗

OO

Thus, both cohomology rings H∗(M) and H∗G(F) are H∗(BG)-algebras, and we can form their

tensor product over H∗(BG).

Theorem 3. Let f : E →M be a continuous fiber bundle with fiber F and structure group G.

Suppose F is equivariantly formal and its cohomology ring H∗(F) is finite-dimensional. Then

(i) there is a ring isomorphism

ϕ : H∗(M)⊗H∗(BG) H∗G(F)→ H∗(E), (3.1)

a⊗b 7→ ( f ∗a)h∗b;

(ii) the pullback map f ∗ : H∗(M)→ H∗(E) is injective.

Proof. (i) Because E is isomorphic to the pullback h∗(FG) of FG, the map h : E→ FG maps the

fiber F of E isomorphically to the fiber of FG. Hence, the inclusion map of the fiber, F → FG,

factors as

F → E
h
→ FG.

This means that in cohomology, the restriction map H∗(FG)→ H∗(F) factors through h∗:

H∗G(F)
h∗

→ H∗(E)→ H∗(F).

Since the restriction H∗G(F)→ H∗(F) is surjective by the hypothesis of equivariant formal-

ity, there are classes b1, . . . ,br in H∗G(F) that restrict to a basis for H∗(F). Then h∗b1, . . .,
h∗br are classes in H∗(E) that restrict to a basis for H∗(F). By the Leray–Hirsch theorem

([6, Th. 5.11 and Exercise 15.12] or [18, Th. 4D.1, p. 432]), the cohomology H∗(E) is a free

H∗(M)-module with basis h∗b1, . . . ,h
∗br.

Next consider the fiber bundle FG→ BG. By the Leray–Hirsch theorem again, H∗(FG) is a

free H∗(BG)-module of rank r with basis b1, . . . ,br. It then follows that H∗(M)⊗H∗(BG) H∗G(F)
is a free H∗(M)-module of rank r with basis 1⊗b1, . . . ,1⊗br . The ring homomorphism ϕ in

(3.1) is a homomorphism of free H∗(M)-modules of the same rank. Moreover, ϕ sends the

basis 1⊗b1, . . . ,1⊗br to the basis h∗b1, . . . ,h
∗br, so ϕ is an isomorphism.

(ii) If {ai} is a basis for H∗(M), then {ai⊗ 1} is part of a basis for H∗(M)⊗H∗(BG) H∗G(F) ≃
H∗(E). Hence, f ∗ : H∗(M)→ H∗(E) is injective. �
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Let h : E → FG be a map that covers the classifying map h : M → BG of the fiber bundle

f : E → M. By Theorem 3, a cohomology class in H∗(E) is a finite linear combination of

elements of the form ( f ∗a)h∗b, with a ∈H∗(M) and b ∈H∗G(F). Under the hypothesis that the

fiber is a compact oriented manifold, by the projection formula [6, Prop. 6.15],

f∗
(

( f ∗a)h∗b
)

= a f∗h
∗b.

Hence, to describe the pushforward f∗ : H∗(E)→ H∗(M), it suffices to describe f∗ on the

image of h∗ : H∗G(F)→H∗(E). Since f ∗ : H∗(M)→H∗(E) is an injection, it is in turn enough

to give a formula for f ∗ f∗h
∗b for b ∈ H∗G(F). This is what we will do in Section 5.

4. THE RELATION BETWEEN G-EQUIVARIANT COHOMOLOGY AND T -EQUIVARIANT

COHOMOLOGY

In the next two sections, let G be a compact connected Lie group acting on a manifold F

and T a maximal torus in G. Denote the normalizer of T in G by NG(T ). The Weyl group of

T in G is the quotient group W := NG(T )/T . It is a finite reflection group. The equivalence

class in W of an element w ∈ NG(T ) should be denoted [w], but in practice we use w to denote

both an element of NG(T ) and its class in W . In a finite reflection group, every element w is a

product of reflections and has a well-defined length length(w), the minimal number of factors

of w when expressed as a product of reflections. We define the sign of an element w to be

(−1)w := (−1)length(w).

The diagonal action of G on EG×F in (1.1) may be written on the right as

(e,x)g = (eg,g−1x) for (e,x) ∈ EG×F and g ∈ G.

Since EG = ET , this action induces an action of the Weyl group W on the homotopy quotient

FT = ET ×T F = (ET ×F)/T :

(e,x)T ·w = (e,x)wT for (e,x)T ∈ FT and w ∈W.

(In general, if a Lie group G containing a torus T acts on the right on a space Y , then the Weyl

group W acts on the right on the orbit space Y/T .) It follows that there is an induced action

of W on H∗T (F). Again because EG = ET , there is a natural projection j : FT → FG. As ex-

plained in [24, Lemma 4], since j : FT → FG is a fiber bundle with fiber G/T , the induced map

j∗ : H∗G(F)→ H∗T (F) identifies the G-equivariant cohomology H∗G(F) with the W -invariant

elements of the T -equivariant cohomology H∗T (F). In particular, j∗ is an injection.

For a torus T of dimension ℓ, the cohomology of its classifying space BT is the polynomial

ring

H∗(BT )≃Q[u1, . . . ,uℓ] (4.1)

(see [24, §1]), and H∗(BG) is the subring of W -invariants:

H∗G(pt) = H∗(BG)≃Q[u1, . . . ,uℓ]
W . (4.2)

5. PUSHFORWARD FORMULA

In this section, G is a compact connected Lie group acting on a compact oriented manifold

F , and f : E →M a C∞ fiber bundle with fiber F and structure group G. Let T be a maximal

torus in G. The action of G on the fiber F restricts to an action of T on F . For simplicity

we assume for now that the fixed point set FT of the T -action on F consists of isolated fixed
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points. (Note that FT is the fixed point set of T on F , while FT is the homotopy quotient of F

by T .) For a fixed point p ∈ FT , let ip : {p} → F be the inclusion map and

i∗p : H∗T (F)→ H∗T
(

{p}
)

≃ H∗(BT )

the restriction map in equivariant cohomology. The normal bundle νp of {p} in F is simply the

tangent space TpF over the singleton space {p}. Since the torus T acts on TpF , the normal

bundle νp is a T -equivariant oriented vector bundle. As such, it has an equivariant Euler

class eT (νp) ∈ H∗(BT ), which is simply the usual Euler class of the induced vector bundle

of homotopy quotients (νp)T → {p}T = BT . At an isolated fixed point of a torus action, the

equivariant Euler class eT (νp) of the normal bundle is nonzero and is therefore invertible in the

fraction field of the polynomial ring H∗(BT ) (see [3, pp. 8–9]). For b ∈ H∗T (F), the fraction

(i∗pb)/eT (νp) is in the fraction field of H∗(BT ).

Lemma 4. Let π : F→ pt be the constant map, πG : FG→ ptG = BG the induced map of homo-

topy quotients, and π∗= π∗G : H∗G(pt)→H∗G(F) the induced map in G-equivariant cohomology.

If F has a fixed point p, then π∗ is injective.

Proof. Let i : pt→ F send the basepoint pt to the fixed point p. Then i is a G-equivariant map

and π ◦ i = id. It follows that i∗ ◦ π∗ = id on H∗G(pt). Hence, π∗ is injective. �

Keeping the notations of Sections 3 and 4, we let h : E → FG be a map that covers a classi-

fying map as in (1.2) and j : FT → FG the natural projection.

Theorem 5. Let f : E → M be a smooth fiber bundle with fiber F and structure group G.

Let T be a maximal torus in G. Suppose F is a compact oriented equivariantly formal mani-

fold and T acts on F with isolated fixed points. Then for b ∈ H∗G(F), the rational expression

∑p∈FT (i∗p j∗b)/eT (νp) is in H∗G(pt) and the pushforward map f∗ : H∗(E)→ H∗(M) is com-

pletely specified by the formula

f ∗ f∗h
∗b = h∗π∗ ∑

p∈FT

i∗p j∗b

eT (νp)
, (5.1)

where the sum runs over all fixed points p of the torus T on F, and π∗ := π∗G is the canonical

map H∗(BG)→ H∗G(F). (See diagram (5.4) below for how the various maps fit together.)

Remark. A priori, (i∗p j∗b)/eT (νp) is a rational expression in u1, . . . ,uℓ (see (4.1)). However, it

is part of the theorem that the sum ∑p∈FT (i∗p j∗b)/eT (νp) is in fact a W -invariant polynomial in

u1, . . . ,uℓ, and hence is in H∗G(pt).

Proof of Theorem 5. For any G-space X , there is a natural projection XT → XG of homotopy

quotients. Hence, there is a commutative diagram

FG

��

FT

joo

��
ptG ptT

ooBG = = BT.

(5.2)
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We append this commutative diagram to the commutative diagram arising from the classifying

map of the fiber bundle E →M:

E

f

��

h // FG

π
G

��

FT

joo

π
T

��
M

h
// BG BT.oo

(5.3)

By the push-pull formula ([5, Prop. 8.3] or [10, Lem. 1.5]), this diagram induces a commutative

diagram in cohomology

H∗(E)

f∗

��

H∗G(F)
h∗oo

π∗
��

// j∗ // H∗T (F)

π
T∗

��
H∗(M) H∗(BG)

h∗
oo � � // H∗(BT ),

(5.4)

where the two horizontal maps on the right are injections by the discussion of Section 4 and,

to simplify the notation, we write π∗ for π
G∗ . Thus, for b ∈ H∗G(F),

f∗h
∗b = h∗π∗b = h∗π

T∗ j∗b. (5.5)

By the equivariant localization theorem for a torus action ([3], [4]),

π
T∗ j∗b = ∑

p∈FT

i∗p j∗b

eT (νp)
∈ H∗(BT ).

(The calculation is done in the fraction field of H∗(BT ), but the equivariant localization the-

orem guarantees that the sum is in H∗(BT ).) By the commutativity of the second square in

(5.4), π
T∗ j∗b ∈ H∗(BG).

Taking f ∗ of both sides of (5.5), we obtain

f ∗ f∗h
∗b = f ∗h∗π

T∗ j∗b

= h∗π∗π
T∗ j∗b

= h∗π∗

(

∑
p∈FT

i∗p j∗b

eT (νp)

)

. �

6. GENERALIZATIONS OF THE THEOREM

On the total space E of a fiber bundle f : E→M with fiber F and structure group G, there are

two special types of cohomology classes: (i) the pullback f ∗a of a class a from the base, and

(ii) the pullback h∗b of a class b from the universal bundle FG in the commutative diagram (1.2).

The first type is usually called a basic class. For lack of a better term, we will call the second

type an equivariant fiber class. According to Theorem 3, if the fiber F of the fiber bundle

is equivariantly formal and has finite-dimensional cohomology, then every cohomology class

on E is a finite linear combination of products of basic classes with equivariant fiber classes.

Therefore, by the projection formula, to describe the pushforward map f∗ : H∗(E)→ H∗(M),
it suffices to describe the pushforward f∗(h

∗b) of an equivariant fiber class h∗b.
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While the hypothesis of equivariant formality is essential to describe completely the Gysin

map in Theorem 5, a closer examination reveals that it is not needed for formula (5.1) to hold.

In fact, formula (5.1) holds for any smooth fiber bundle, with no hypotheses on the fiber. In

case f ∗ : H∗(M)→ H∗(E) is injective, as in Theorem 5, formula (5.1) determines f∗(h
∗b) and

gives a pushforward formula for the equivariant fiber class h∗b. We state the conclusion of this

discussion in the following theorem.

Theorem 6. Let f : E → M be a smooth fiber bundle with fiber F and structure group G.

Suppose a maximal torus T in G acts on F with isolated fixed points. Then for b ∈ H∗G(F),

f ∗ f∗h
∗b = h∗π∗ ∑

p∈FT

i∗p j∗b

eT (νp)
.

In case the pullback f ∗ : H∗(M)→H∗(E) is injective, this formula determines the pushforward

f∗(h
∗b) of the equivariant fiber class h∗b of E.

If the fixed points of the T -action on the fiber F are not isolated, Theorem 5 still holds

provided one replaces the sum over the isolated fixed points with the sum of integrals over the

components of the fixed point set,

∑
C

∫

C

i∗C j∗b

eT (νC)
,

where C runs over the components of FT , iC : C → M is the inclusion map, and νC is the

normal bundle to C in M. The Euler class eT (νC) is nonzero [3], essentially because in the

normal direction T has no fixed vectors, so that the representation of T on the normal space at

any point has no trivial summand.

Although the formula in Theorem 5 looks forbidding, it is actually quite computable. In the

rest of the paper, we will show how to derive various pushforward formulas in the literature

from Theorem 5.

7. THE EQUIVARIANT COHOMOLOGY OF A COMPLETE FLAG MANIFOLD

In order to apply Theorem 5 to a flag bundle, we need to recall a few facts from [24] about the

ordinary and equivariant cohomology of a complete flag manifold G/T , where G is a compact

connected Lie group and T a maximal torus in G.

A character of a torus T is a multiplicative homomorphism γ : T → C×, where C× is the

multiplicative group of nonzero complex numbers. If we identify C× with the general linear

group GL(1,C), then a character is a 1-dimensional complex representation of T . Let T̂ be the

group of characters of T , written additively: if α ,β ∈ T̂ and t ∈ T , then we write

tα := α(t) and tα+β := α(t)β (t).

Suppose X → X/T is a principal T -bundle. To each character γ of T , one associates a

complex line bundle L(X/T,γ) on X/T by the mixing construction

L(X/T,γ) := X ×γ C := (X ×C)/T,

where T acts on X ×C by

(x,v) · t = (xt,γ(t−1)v).

Associated to a compact connected Lie group G and a maximal torus T in G are two princi-

pal T -bundles: the principal T -bundle G→G/T on G/T and the universal T -bundle ET →BT
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on the classifying space BT . Thus, each character γ : T → C× gives rise, by the mixing con-

struction, to a complex line bundle

Lγ := L(G/T,γ) = G×γ C

on G/T and a complex line bundle

Sγ := L(BT,γ) = ET ×γ C

on BT .

The Weyl group W of T in G acts on the character group T̂ of T by

(w · γ)(t) = γ(w−1tw).

If the Lie group G acts on the right on a space X , then the Weyl group W acts on the right on

the orbit space X/T by

rw(xT ) = (xT )w = xwT.

This action of W on X/T induces an action of W on the cohomology ring H∗(X/T ). Moreover,

for w ∈W and γ ∈ T̂ ,

r∗wLγ = Lw·γ , r∗wSγ = Sw·γ

(see [24, Prop. 1]).

Fix a basis χ1, . . . ,χℓ for the character group T̂ , and let

yi = c1(Lχi
) ∈ H2(G/T ) and ui = c1(Sχi

) ∈H2(BT )

be the first Chern classes of the line bundles Lχi
and Sχi

on G/T and on BT respectively. Then

H∗(BT ) =Q[u1, . . . ,uℓ].

The Weyl group W acts on the polynomial ring Q[u1, . . . ,uℓ] by

w ·ui = w · c1(Sχi
) = c1(Sw·χi

).

It acts on the polynomial ring R :=Q[y1, . . . ,yℓ] in the same way. The cohomology ring of G/T

is

H∗(G/T ) =Q[y1, . . . ,yℓ]/(R
W
+ ),

where (RW
+ ) is the ideal generated by the homogeneous W -invariant polynomials of positive

degree in R (see [24, Th. 5]). Since the cohomology of G/T has only even-degree elements,

by Proposition 2 the space G/T is equivariantly formal under the action of any connected Lie

group.

Consider the fiber bundle (G/T )T → BT with fiber G/T . Since G/T is equivariantly formal

and has finite-dimensional cohomology, by Theorem 3, there is a ring isomorphism

ϕ : H∗(BT )⊗H∗(BG) H∗G(G/T ) ∼−→ H∗T (G/T ),

a⊗b 7→ (π∗T a) j∗b.

Now

(G/T )G = EG×G (G/T )≃ (EG)/T = BT. (7.1)

Thus,

H∗G(G/T )≃H∗(BT ) =Q[u1, . . . ,uℓ].

It is customary to denote ϕ(ui⊗1) = π∗T (ui) ∈ H2
T (G/T ) also by ui, but we will write

ỹi = ϕ(1⊗ui) = j∗(ui) ∈ H∗T (G/T ).
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Then the T -equivariant cohomology of G/T may also be written in the form

H∗T (G/T )≃Q[u1, . . . ,uℓ, ỹ1, . . . , ỹℓ]/J,

where J is the ideal generated by p(ỹ)− p(u) as p runs over the invariant polynomials of

positive degree in ℓ variables [24, Th. 11]. Since j∗ : H∗G(G/T )→ H∗T (G/T ) is a ring homo-

morphism, we have

j∗b(u) = b(ỹ1, . . . , ỹℓ) =: b(ỹ). (7.2)

The maximal torus T acts on G/T by left multiplication, and the fixed point set is precisely

the Weyl group W = NG(T )/T . At a fixed point w ∈W , we have the following two formulas:

(i) (Restriction formula for G/T ) [24, Prop. 10] The restriction homomorphism

i∗w : H∗T (G/T )→ H∗T
(

{w}
)

≃ H∗(BT )

is given by

i∗wui = ui, i∗wỹi = w ·ui.

(ii) (Euler class formula) [24, Prop. 13] The equivariant Euler class of the normal bundle

νw at the fixed point w ∈W is

eT (νw) = w ·

(

∏
α∈△+

c1(Sα)

)

= (−1)w ∏
α∈△+

c1(Sα) ∈ H∗(BT),

where △+ is a choice of positive roots of the adjoint representation of T on the com-

plexified Lie algebra of G.

8. COMPLETE FLAG BUNDLES

In this section G is a compact connected Lie group with maximal torus T , and f : E→M is

a fiber bundle with fiber G/T and structure group G. Let X →M be the associated principal

G-bundle. Then

E = X ×G (G/T )≃ X/T

and M ≃ X/G, so the given bundle is isomorphic to X/T → X/G.

With F = G/T in the commutative diagram (5.3), yielding

E

f

��

h // (G/T )G

π
G

��

(G/T )T

joo

π
T

��
M

h
// BG BT,oo

(8.1)

we see that the equivariant fiber classes on E are of the form h∗b(u), where

b(u) = b(u1, . . . ,uℓ) ∈ H∗G(G/T )≃H∗(BT ) =Q[u1, . . . ,uℓ].

Theorem 7. For b(u) ∈ H∗(BT)≃ H∗G(G/T ), the pushforward of h∗b(u) under f is given by

f ∗ f∗h
∗b(u) = h∗ ∑

w∈W

w ·

(

b(u)

∏α∈△+ c1(Sα )

)

= h∗
(

∑w∈W (−1)ww ·b(u)

∏α∈△+ c1(Sα)

)

.
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Proof. Because G/T is equivariantly formal, Theorem 5 applies. Under the action of T on

G/T by left multiplication, the fixed point set is the Weyl group W = NG(T )/T ⊂ G/T , so in

Theorem 5, FT =W , a finite set, and

f ∗ f∗h
∗b(u) = h∗π∗ ∑

w∈W

i∗w j∗b(u)

eT (νw)

= h∗π∗ ∑
w∈W

i∗wb(ỹ)

eT (νw)

(

by (7.2)
)

= h∗π∗ ∑
w∈W

w ·

(

b(u)

∏α∈△+ c1(Sα )

)

(by the restriction and Euler class formulas)

= h∗
(

∑w∈W (−1)ww ·b(u)

∏α∈△+ c1(Sα)

)

.

In the last line we have omitted π∗ because it is injective (Lemma 4), so that H∗(BG) can be

identified with a subring of H∗G(G/T ). �

9. THE CHARACTERISTIC MAP

If T is a torus and T̂ its character group, we let Sym(T̂ ) be the symmetric algebra of T̂ over

the field Q of rational numbers; if χ1, . . . ,χℓ is a basis for the character group T̂ , then

Sym(T̂ ) =Q[χ1, . . . ,χℓ].

Associated to a principal T -bundle X→ X/T is an algebra homomorphism c = cX/T : Sym(T̂ )
→ H∗(X/T ) called the characteristic map of X/T .

Each character γ ∈ T̂ gives rise to a complex line bundle L(X/T,γ) = X ×γ C→ X/T , as

discussed in Section 7. Define c : T̂ → H2(X/T ) by

c(γ) = the first Chern class c1

(

L(X/T,γ)
)

∈H2(X/T ).

This map can be checked to be a homomorphism of abelian groups [24, Section 1]. The

extension of this group homomorphism to an algebra homomorphism c : Sym(T̂ )→H∗(X/T )
is the characteristic map of X/T .

The associated line bundles satisfy the following functorial property.

Lemma 8. Let (h̄,h) be a T -equivariant bundle map from X → X/T to Y → Y/T . For each

character γ of T , the map h pulls the bundle L(Y/T,γ) back to L(X/T,γ):

h∗L(Y/T,γ)≃ L(X/T,γ).

Proof. An element of h∗L(Y/T,γ) is an ordered pair
(

xT, [y,v′]T
)

such that yT = h(xT ) =

h̄(x)T . Hence, y = h̄(x)t for some t ∈ T and

[y,v′]T = [h̄(x)t,v′]T = [h̄(x), tv′] = [h̄(x),v]T ,

where we set v = tv′ = γ(t)v′.
The map φ : h∗L(Y/T,γ)→ L(X/T,γ),

(

xT, [h̄(x),v]
)

7→ [x,v],

is a well-defined bundle map and has an obvious inverse. �
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It follows from this lemma that the characteristic map also satisfies a functorial property.

Lemma 9. Under the hypotheses above, the diagram

Sym(T̂ )
cX/T

yyrrr
rr
rr
rr
r cY/T

%%▲▲
▲▲

▲▲
▲▲

▲▲

H∗(X/T ) H∗(Y/T )
h∗

oo

(9.1)

is commutative.

Proof. For γ ∈ T̂ ,

h∗
(

cY/T (γ)
)

= h∗
(

c1

(

L(Y/T,γ)
)

)

= c1

(

h∗
(

L(Y/T,γ)
)

)

= c1

(

L(X/T,γ)
)

= cX/T (γ).

Since h∗ ◦ cY/T and cX/T are both algebra homomorphisms and Sym(T̂ ) is generated by ele-

ments of T̂ , the lemma follows. �

Suppose a compact Lie group G with maximal torus T acts on the right on two spaces X

and Y in such a way that X → X/G and Y → Y/G are principal G-bundles. Then X → X/T

and Y → Y/T are principal T -bundles, and the Weyl group W = NG(T )/T acts on T̂ , X/T ,

and Y/T , thus inducing actions on Sym T̂ , H∗(X/T ), and H∗(Y/T ). By [24, Cor. 2], the

characteristic maps cX/T and cY/T are W -homomorphisms. If h̄ : X→Y is a G-equivariant map,

h : X/T →Y/T is the induced map, and rw and r′w are right actions of w ∈W on X/T and Y/T

respectively, then h ◦ rw = r′w ◦ h, so the induced map h∗ : H∗(Y/T )→H∗(X/T ) in cohomology

is also a W -homomorphism. Thus, all three maps in the commutative diagram (9.1) are W -

homomorphisms.

Lemma 10. Suppose a group G containing a subgroup T acts on the right on two spaces X and

Y , and h̄ : X → Y is a G-equivariant map. If h : X/G→ Y/G is the induced map of quotients,

then the pullback by h commutes with the quotient by T :

(h∗Y )/T = h∗(Y/T ).

Proof. By inserting quotients by T in the pullback diagram, we have a commutative diagram

h∗Y //

��

Y

��
(h∗Y )/T //

��

Y/T

��
X/G

h
// Y/G.

By the definition of pullback,

h∗Y = {(xG,y) ∈ X/G×Y | h̄(x)G = yG}.

Hence,

(h∗Y )/T = {(xG,y)T = (xG,yT ) ∈ X/G×Y/T | h̄(x)G = yG}.
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On the other hand,

h∗(Y/T ) = {(xG,yT ) ∈ X/G×Y/T | h̄(x)G = yG}.

Thus,

(h∗Y )/T = h∗(Y/T ). �

Now let G be a compact Lie group with maximal torus T and X → X/G a principal G-

bundle. Let h : X/G→ BG be the classifying map of X → X/G, so that there is a commutative

diagram

X
h̄ //

��

EG

��
X/G

h
// BG

with X ≃ h∗(EG). Let h : X/T → (EG)/T be the map of quotients induced from h̄. By

Lemma 10 and (7.1),

X/T ≃ (h∗EG)/T = h∗(EG/T) = h∗(BT )≃ h∗
(

(G/T )G

)

.

We therefore have the commutative diagram

X/T
h //

f

��

(EG)/T

��
X/G

h
// BG.

= BT ≃ (G/T )G

In Theorem 7, let b(u) be the characteristic class cET/T (γ) = c1(Sγ ) ∈ H∗(BT ) for some

γ ∈ Sym(T̂ ). By Lemma 9, in which we take Y = EG = ET ,

h∗cET/T (γ) = cX/T (γ).

Because h∗ and cX/T commute with the action of the Weyl group, Theorem 7 becomes

f ∗ f∗cX/T (γ) =
∑w∈W (−1)ww ·h∗cET/T (γ)

∏α∈△+ h∗cET/T (α)
=

∑w∈W (−1)ww · cX/T (γ)

∏α∈△+ cX/T (α)

=
cX/T

(

∑w∈W (−1)ww · γ
)

cX/T

(

∏α∈△+ α
) ,

which agrees with Brion’s pushforward formula for a complete flag bundle [8, Prop. 1.1], with

the difference that our formula is in the differentiable category with G a compact connected

Lie group, while Brion’s formula is in the algebraic category with G a reductive connected

algebraic group.

10. PARTIAL FLAG BUNDLES

Keeping the notations of the preceding two sections, let H be a closed subgroup of the

compact connected Lie group G containing the maximal torus T . The map f : X/H→X/G is a

fiber bundle with fiber G/H and structure group G, with G acting on G/H by left multiplication.

Since G/H has cohomology only in even degrees [24, Th. 6], it is equivariantly formal, so

Theorem 5 suffices to describe the Gysin map of f .
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Denote by WH and WG the Weyl groups of T in H and in G respectively. By Lemma 1 there

is a bundle map (h,h) from the fiber bundle f : X/H→ X/G to the fiber bundle π : (G/H)G→
BG. The cohomology of (G/H)G = (EG)×G G/H = EG/H = BH is

H∗G(G/H) = H∗(BH) = H∗(BT)WH =Q[u1, . . . ,uℓ]
WH ,

the ring of WH-invariant real polynomials in u1, . . . ,uℓ (see (4.2)). Choose a set △+(H) of

positive roots of H and a set△+ of positive roots of G containing △+(H).

Theorem 11. For b(u) ∈ H∗(BH), the pushforward of the equivariant fiber class h∗b(u) ∈
H∗(X/H) under f is given by

f ∗ f∗h
∗b(u) = h∗ ∑

w∈WG/WH

w ·

(

b(u)

∏α∈△+−△+(H) c1(Sα)

)

.

Proof. By [24, Prop. 14, Th. 11(ii), Th. 19] we have the following facts concerning the equi-

variant cohomology of G/H:

(i) The fixed point set of the action of T on G/H by left multiplication is

WG/WH = NG(T )/NH(T ) = NG(T )/
(

NG(T )∩H
)

⊂ G/H.

(ii) The T -equivariant cohomology of G/H is

H∗T (G/H) =
(

Q[u1, . . . ,uℓ]⊗Q[ỹ1, . . . , ỹℓ]
WH
)

/J,

where J is the ideal generated by p(ỹ)− p(u) as p ranges over all WG-homogeneous

polynomials of positive degree in ℓ variables.

(iii) (Restriction formula for G/H) If iw : {w} →֒G/H is the inclusion map of a fixed point

w ∈WG/WH , then the restriction homomorphism

i∗w : H∗T (G/H)→ HT

(

{w}
)

≃ H∗(BT)

in equivariant cohomology is given by

i∗wui = ui, i∗w f (ỹ) = w · f (u)

for any WH-invariant polynomial f (ỹ) ∈Q[ỹ1, . . . , ỹℓ]
WH .

(iv) (Euler class formula) The equivariant Euler class of the normal bundle νw at a fixed

point w ∈WG/WH is

eT (νw) = w ·

(

∏
α∈△+−△+(H)

c1(Sα)

)

.

By plugging these facts into Theorem 5, the theorem follows as in the proof of Theorem 7.

�

11. OTHER PUSHFORWARD FORMULAS

In this section we show that the Borel–Hirzebruch formula [5] may be derived in the same

manner as Theorem 5 and that the formulas of Fulton–Pragacz [14] for a complete flag bundle

and Pragacz [23] for a Grassmann bundle are consequences of Theorem 5.
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11.1. The Borel–Hirzebruch Formula. As before, G is a compact connected Lie group with

maximal torus T . Let EG→ BG and ET → BT be the universal principal G-bundle and T -

bundle respectively. Since BT = (ET )/T = (EG)/T and BG= (EG)/G, the natural projection

π : BT → BG is a fiber bundle with fiber G/T . From Theorem 5 we will deduce a formula of

Borel and Hirzebruch for the Gysin map of BT →BG. Although the Borel–Hirzebruch formula

concerns a fiber bundle with a homogeneous space G/T as fiber, it is not a special case of the

formulas of Akyildiz–Carrell [2] or Brion [8], because BT and BG are infinite-dimensional. It

is, however, amenable to our method, because BT and BG are homotopy quotients of finite-

dimensional manifolds by the group G.

Let W be the Weyl group of T in G. Let α1, . . . ,αm be a choice of positive roots for T in G,

and write ai = c1(Sαi
) ∈H2(BT ) for their images under the characteristic map.

Theorem 12 ([5], Th. 20.3, p. 316). For x ∈ H∗(BT ), the pushforward under π∗ is

π∗x =
∑w∈W (−1)ww · x

a1 · · ·am

.

Proof. If we represent BT as the homotopy quotient (G/T )G and BG as the homotopy quotient

(pt)G, then there is a commutative diagram

BT = (G/T )G

π

��

(G/T )T

joo

π
T

��
(pt)G (pt)T

ooBG = = BT.

By the push-pull formula ([5, Prop. 8.3] or [10, Lem. 1.5]), this diagram induces a commutative

diagram in cohomology

H∗(BT ) // j∗ //

π∗
��

H∗T (G/T )

π
T∗

��
H∗(BG) �

� // H∗(BT ),

where the horizontal maps are injections by the discussion of Section 4. For w ∈W ⊂G/T , let

iw : {w}→G/T be the inclusion map and i∗w : H∗T (G/T )→H∗T
(

{w}
)

= H∗(BT ) the restriction

map in equivariant cohomology. For x= b(u)∈H∗(BT ), recall that j∗b(u) = b(ỹ) and i∗wb(ỹ)=
w ·b(u). As in the proof of Theorem 5, by applying the equivariant localization theorem to the

T -manifold G/T , we obtain

π∗x = π∗b(u) = π
T∗ j∗b(u) = π

T∗b(ỹ) = ∑
w∈W

i∗wb(ỹ)

eT (νw)

= ∑
w∈W

w ·

(

b(u)

∏α∈△+ c1(Sα)

)

=
∑w∈W (−1)ww ·b(u)

∏α∈△+ c1(Sα)
=

∑w∈W (−1)ww · x

∏α∈△+ ai

. �
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11.2. The Associated Complete Flag Bundle. Suppose V →M is a C∞ complex vector bun-

dle of rank n. Let f : Fℓ(V )→ M be the associated bundle of complete flags in the fibers of

V . It is a fiber bundle with fiber G/T , where G is the unitary group U(n) and T is the maximal

torus

T =











t =







t1
. . .

tn







∣

∣

∣

∣

∣

∣

∣

ti ∈U(1)











= U(1)×·· ·×U(1) = U(1)n.

The Weyl group of T in U(n) is Sn, the symmetric group on n letters [9, Th. IV.3.2, p. 170].

Consider the basis χ1, . . . ,χn for the characters of T , where χi(t) = ti. A simple calculation

of tAt−1, where t ∈ T and A = [ai j] is an n×n matrix, shows that the roots of U(n) are χiχ
−1
j ,

i 6= j, or in the additive notation of this paper, χi− χ j. (The root χi− χ j is the function: T →

U(1) given by tχi−χ j = χi(t)χ j(t)
−1 = tit

−1
j .) These are the global roots, not the infinitesimal

roots, of a Lie group [9, Def. V.1.3, p. 185]. A choice of positive roots for U(n) is

△+ = {χi− χ j | 1≤ i < j ≤ n}.

Recall from (7.1) that (G/T )G = BT . By Lemma 1, there are bundle maps h̄ and h,

Fℓ(V )

��

h̄ // (G/T )G

��
M

h
// BG,

= BT

and correspondingly, ring homomorphisms in cohomology

H∗
(

Fℓ(V )
)

H∗(BT )
h̄∗oo

H∗(M)

f ∗

OO

H∗(BG)
h∗

oo
?�

OO
≃Q[u1, . . . ,un]

≃Q[u1, . . . ,un]
Sn .

By (4.2), the vertical map on the right is an injection. By Theorem 3, the elements ai :=
h̄∗(ui) ∈H2

(

Fℓ(V )
)

generate H∗
(

Fℓ(V )
)

as an algebra over H∗(M).
We will now deduce from Theorem 7 a formula for the pushforward map f∗.

Proposition 13. For the associated complete flag bundle f : Fℓ(V )→M, if b(u) ∈ H∗(BT ) =
Q[u1, . . . ,uℓ], then

f ∗ f∗b(a) = ∑
w∈Sn

w ·

(

b(a)

∏i< j(ai−a j)

)

,

where w ·b(a1, . . . ,an) = b
(

aw(1), . . . ,aw(n)

)

.

Proof. Since h̄∗ : H∗(BT )→H∗
(

Fℓ(V )
)

is a ring homomorphism, for b(u)∈H∗(BT )=Q[u1, . . . ,un],

b(a) = b(a1, . . . ,an) = b(h̄∗u1, . . . , h̄
∗un) = h̄∗b(u1, . . . ,un) = h̄∗b(u) ∈ H∗

(

Fℓ(V )
)

.
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By Theorem 7,

f ∗ f∗b(a) = f ∗ f∗h̄
∗b(u)

= h̄∗ ∑
w∈Sn

w ·

(

b(u)

∏α∈△+ c1(Sα )

)

.

Since h̄∗ commutes with w (p. 13),

h̄∗
(

w ·b(u)
)

= w ·
(

h̄∗b(u)
)

= w ·b(a).

If α ∈△+, then α = χi− χ j for some 1≤ i < j ≤ n, so that

h̄∗c1(Sα ) = h̄∗c1(Sχi−χ j
) = h̄∗(ui−u j) = ai−a j.

Hence,

f ∗ f∗b(a) = ∑
w∈Sn

w ·

(

b(a)

∏i< j(ai−a j)

)

,

which agrees with [14, Section 4.1, p. 41]. �

11.3. The Associated Grassmann Bundle. For a complex vector bundle V → M of rank n,

the associated Grassmann bundle f : G(k,V )→M of k-planes in the fibers of V is a fiber bundle

with fiber the Grassmannian G(k,n) = G/H , where

G = U(n) and H = U(k)×U(n− k).

A maximal torus contained in H is T = U(1)n. The Weyl groups of T in G and H are

WG = Sn and WH = Sk×Sn−k.

If we let χi and△+ be as in Subsection 11.2, a choice of positive roots for T in the subgroup

H is

△+(H) = {χi− χ j | 1≤ i < j ≤ k}∪{χi− χ j | k+1≤ i < j ≤ n}.

By (4.2),

H∗(BH) = H∗(BT )WH =Q[u1, . . . ,un]
Sk×Sn−k ,

where ui = c1(Sχi
).

Over G(k,V ) there are a tautological subbundle S and a tautological quotient bundle Q, with

total Chern classes

c(S) = 1+ c1(S)+ · · ·+ ck(S) =
k

∏
i=1

(1+ai),

c(Q) = 1+ c1(Q)+ · · ·+ cn−k(Q) =
n

∏
i=k+1

(1+ai).

The ai for 1≤ i≤ k are called the Chern roots of S, and the ai for k+1≤ i≤ n the Chern roots

of Q (see [6, §21, The Splitting Principle]). These ai are not cohomology classes on G(k,V ),
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but are classes on the complete flag bundle Fℓ(V ), each of degree 2. The cohomology ring of

G(k,V ) is

H∗
(

G(k,V )
)

=
H∗(M)

[

c1(S), . . . ,ck(S),c1(Q), . . . ,cn−k(Q)
]

(

c(s)c(Q)− f ∗c(V )
)

=
H∗(M)⊗QQ[a1, . . . ,an]

Sk×Sn−k

(

∏(1+ai)− (1+ e1 + · · ·+ en)
) ,

where ei is the i-th Chern class ci( f ∗V ).

Proposition 14 ([23], Lemma 2.5). For the associated Grassmann bundle f : G(k,V )→M, if

b(a) = b(a1, . . . ,an) ∈Q[a1, . . . ,an]
Sk×Sn−k , then its pushforward under f∗ is given by

f ∗ f∗b(a) = ∑
w∈Sn/(Sk×Sn−k)

w ·

(

b(a)

∏k
i=1 ∏n

j=k+1(ai−a j)

)

.

Proof. For p ∈ M, denote the fiber of the vector bundle V over p by Vp and let Fℓ(V ) →
G(k,V ) be the natural map that sends a complete flag Λ1 ⊂ ·· · ⊂ Λn = Vp where dimC Λi = i

to the partial flag Λk ⊂ Vp. Let G = U(n), H = U(k)×U(n− k), and T = U(1)n. This map

Fℓ(V )→G(k,V ) is a fiber bundle with fiber H/T and group G. If P is the bundle of all unitary

frames of the vector bundle V , then P is a principal G-bundle, and Fℓ(V ) = P×G (G/T ) and

G(k,V ) = P×G (G/H) are the associated fiber bundles with fiber G/T and G/H respectively.

Recall that (G/H)G = EG×G (G/H)≃ BH . As in Lemma 1, the classifying map h : M→
BG of the principal bundle P→M induces a commutative diagram of bundle maps

Fℓ(V )

��

h̄ // (G/T )G

��
G(k,V )

h //

f

��

(G/H)G

π

��
M

h
// BG,

≃ BT

≃ BH

and correspondingly, a diagram of ring homomorphisms in cohomology

H∗
(

Fℓ(V )
)

H∗(BT )
h̄∗oo

H∗
(

G(k,V )
)

OO

H∗(BH)
h∗oo

⋃

H∗(M)

f ∗

OO

H∗(BG)
h∗

oo

⋃

≃Q[u1, . . . ,un]

≃Q[u1, . . . ,un]
Sk×Sn−k

≃Q[u1, . . . ,un]
Sn .

As in Subsection 11.2, the Chern roots ai are precisely h̄∗(ui).
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By Theorem 11,

f ∗ f∗b(a) = f ∗ f∗h
∗b(u)

= h∗ ∑
w∈WG/WH

w ·

(

b(u)

∏α∈△+−△+(H) c1(Sα)

)

= ∑
w∈Sn/(Sk×Sn−k)

w ·

(

b(a)

∏k
i=1 ∏n

j=k+1(ai−a j)

)

. �

12. SYMMETRIZING OPERATORS

Interpolation theory is concerned with questions such as how to find a polynomial on Rn

with given values at finitely many given points. In interpolation theory there are symmetrizing

operators that take a polynomial with certain symmetries to another polynomial with a larger

set of symmetries. For example, the Lagrange–Sylvester symmetrizer takes a polynomial sym-

metric in two sets of variables x1, . . . ,xk and xk+1, . . . ,xn separately to a polynomial symmetric

in all the variables x1, . . . ,xn. A curious byproduct of our Theorem 5 is that it provides a

geometric interpretation and consequently a generalization of some symmetrizing operators in

interpolation theory [20].

Let Xn = (x1, . . . ,xn) be a sequence of variables and Z[Xn] = Z[x1, . . . ,xn] the polynomial

ring over Z generated by x1, . . . ,xn. The Lagrange–Sylvester symmetrizer is the operator

∆ : Z[Xn]
Sk×Sn−k → Z[Xn]

Sn taking b(x) ∈ Z[Xn]
Sk×Sn−k to

∆b(x) = ∑
w∈Sn/(Sk×Sn−k)

w

(

b(x)

∏k
i=1 ∏n

j=k+1(x j− xi)

)

.

The Jacobi symmetrizer is the operator ∂ : Z[Xn]→ Z[Xn]
Sn taking b(x) ∈ Z[Xn] to

∂b(x) = ∑
w∈Sn

w

(

b(x)

∏i< j(x j− xi)

)

.

Let G be a compact Lie group of rank n and H a closed subgroup containing a maximal

torus T of G. Let WH and WG be the Weyl groups of T in H and in G respectively. Theorem 5

suggests that to every compact Lie group G and closed subgroup H of maximal rank, one can

associate a symmetrizing operator on the polynomial ring Z[Xn]
WH as follows.

The map π : G/H→ pt induces a pushforward map in G-equivariant cohomology,

π∗ : H∗G(G/H)→ H∗G(pt).

Now the G-equivariant cohomology with integer coefficients of G/H is

H∗G(G/H) = H∗(BH) = Z[Xn]
WH

and the G-equivariant cohomology with integer coefficients of a point is

H∗G(pt) = H∗(BG) = Z[Xn]
WG .

For the action of T on G/H , the fixed point set is WG/WH . Let △+(H) be a set of positive

roots of H , and △+ a set of positive roots of G containing △+(H). As in Section 7, cET/T

is the characteristic map of BT = ET/T . The equivariant Euler class of the normal bundle at

the identity element of G/H is ∏α∈△+−△+(H) cET/T (α) ∈ H∗(BT )≃ Z[Xn] (see [24, Th. 19]).
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Following our computation for the Gysin maps of a complete flag bundle and a Grassmann

bundle (but with integer instead of rational coefficients), we define the symmetrizing operator

� : Z[Xn]
WH → Z[Xn]

WG

to be the operator taking b(x) ∈ Z[Xn]
WH to

�b(x) = ∑
w∈WG/WH

w

(

b(x)

∏α∈△+−△+(H) cET/T (α)

)

.

The Lagrange–Sylvester symmetrizer is the special case G = U(n), H = U(k)×U(n− k), and

T = U(1)n, and the Jacobi symmetrizer is the special case G = U(n) and H = T = U(1)n.
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