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Chapter Two

From Sheaf Cohomology to the Algebraic de Rham Theorem

by Fouad El Zein and Loring W. Tu

INTRODUCTION1

The concepts of homology and cohomology trace their origin to the work of Poincaré in the late2

nineteenth century. They attach to a topological space algebraic structures such as groups or rings3

that are topological invariants of the space. There are actually many different theories, for exam-4

ple, simplicial, singular, and de Rham theories. In 1931, Georges de Rham proved a conjecture of5

Poincaré on a relationship between cycles and smooth differential forms, which establishes for a6

smooth manifold an isomorphism between singular cohomology with real coefficients and de Rham7

cohomology.8

More precisely, by integrating smooth forms over singular chains on a smooth manifold M , one9

obtains a linear map10

Ak(M) → Sk(M,R)

from the vector space Ak(M) of smooth k-forms onM to the vector space Sk(M,R) of real singular11

k-cochains on M . The theorem of de Rham asserts that this linear map induces an isomorphism12

H∗
dR(M)

∼
→ H∗(M,R)

between the de Rham cohomology H∗
dR(M) and the singular cohomology H∗(M,R), under which13

the wedge product of classes of closed smooth differential forms corresponds to the cup product of14

classes of cocycles. Using complex coefficients, there is similarly an isomorphism15

h∗
(
A•(M,C)

) ∼
→ H∗(M,C),

where h∗
(
A•(M,C)

)
denotes the cohomology of the complexA•(M,C) of smoothC-valued forms16

on M .17

By an algebraic variety, we will mean a reduced separated scheme of finite type over an alge-18

braically closed field [17, Volume 2, Ch. VI, §1.1, p. 49]. In fact, the field throughout the article19

will be the field of complex numbers. For those not familiar with the language of schemes, there is20

no harm in taking an algebraic variety to be a quasiprojective variety; the proofs of the algebraic de21

Rham theorem are exactly the same in the two cases.22

Let X be a smooth complex algebraic variety with the Zariski topology. A regular function on23

an open set U ⊂ X is a rational function that is defined at every point of U . A differential k-form24

on X is algebraic if locally it can be written as
∑

fI dgi1 ∧ · · · ∧ dgik for some regular functions25

fI , gij . With the complex topology, the underlying set of the smooth variety X becomes a complex26

manifold Xan. By de Rham’s theorem, the singular cohomology H∗(Xan,C) can be computed27

from the complex of smooth C-valued differential forms on Xan. Grothendieck’s algebraic de Rham28

theorem asserts that the singular cohomologyH∗(Xan,C) can in fact be computed from the complex29
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Ω•
alg of sheaves of algebraic differential forms on X . Since algebraic de Rham cohomology can be30

defined over any field, Grothendieck’s theorem lies at the foundation of Deligne’s theory of absolute31

Hodge classes (see Chapter ?? in this volume).32

In spite of its beauty and importance, there does not seem to be an accessible account of Grothen-33

dieck’s algebraic de Rham theorem in the literature. Grothendieck’s paper [10], invoking higher34

direct images of sheaves and a theorem of Grauert–Remmert, is quite difficult to read. An impetus35

for our work is to give an elementary proof of Grothendieck’s theorem, elementary in the sense that36

we use only tools from standard textbooks as well as some results from Serre’s groundbreaking FAC37

and GAGA papers ([15] and [16]).38

This article is in two parts. In Part I, comprising Sections 1 through 6, we prove Grothendieck’s39

algebraic de Rham theorem more or less from scratch for a smooth complex projective variety X ,40

namely that there is an isomorphism41

H∗(Xan,C) ≃ H
∗(X,Ω•

alg)

between the complex singular cohomology of Xan and the hypercohomology of the complex Ω•
alg of42

sheaves of algebraic differential forms on X . The proof, relying mainly on Serre’s GAGA princi-43

ple and the technique of hypercohomology, necessitates a discussion of sheaf cohomology, coherent44

sheaves, and hypercohomology, and so another goal is to give an introduction to these topics. While45

Grothendieck’s theorem is valid as a ring isomorphism, to keep the account simple, we prove only a46

vector space isomorphism. In fact, we do not even discuss multiplicative structures on hypercoho-47

mology. In Part II, comprising Sections 7 through 10, we develop more machinery, mainly the Čech48

cohomology of a sheaf and the Čech cohomology of a complex of sheaves, as tools for computing49

hypercohomology. We prove that the general case of Grothendieck’s theorem is equivalent to the50

affine case, and then prove the affine case.51

The reason for the two-part structure of our article is the sheer amount of background needed to52

prove Grothendieck’s algebraic de Rham theorem in general. It seems desirable to treat the simpler53

case of a smooth projective variety first, so that the reader can see a major landmark before being54

submerged in yet more machinery. In fact, the projective case is not necessary to the proof of the55

general case, although the tools developed, such as sheaf cohomology and hypercohomology, are56

indispensable to the general proof. A reader who is already familiar with these tools can go directly57

to Part II.58

Of the many ways to define sheaf cohomology, for example as Čech cohomology, as the coho-59

mology of global sections of a certain resolution, or as an example of a right derived functor in an60

abelian category, each has its own merit. We have settled on Godement’s approach using his canoni-61

cal resolution [8, §4.3, p. 167]. It has the advantage of being the most direct. Moreover, its extension62

to the hypercohomology of a complex of sheaves gives at once the E2 terms of the standard spectral63

sequences converging to the hypercohomology.64

What follows is a more detailed description of each section. In Part I, we recall in Section 165

some of the properties of sheaves. In Section 2, sheaf cohomology is defined as the cohomology of66

the complex of global sections of Godement’s canonical resolution. In Section 3, the cohomology67

of a sheaf is generalized to the hypercohomology of a complex of sheaves. Section 4 defines coher-68

ent analytic and algebraic sheaves and summarizes Serre’s GAGA principle for a smooth complex69

projective variety. Section 5 proves the holomorphic Poincaré lemma and the analytic de Rham the-70

orem for any complex manifold, and Section 6 proves the algebraic de Rham theorem for a smooth71

complex projective variety.72
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In Part II, we develop in Sections 7 and 8 the Čech cohomology of a sheaf and of a complex73

of sheaves. Section 9 reduces the algebraic de Rham theorem for an algebraic variety to a theorem74

about affine varieties. Finally, in Section 10 we treat the affine case.75

We are indebted to to George Leger for his feedback and to Jeffrey D. Carlson for helpful dis-76

cussions and detailed comments on the many drafts of the article, and for pointing out numerous77

gaps, some quite serious. The second author is also grateful to the Tufts University Faculty Research78

Award Committee for a New Directions in Research Award and to the National Center for Theo-79

retical Sciences Mathematics Division (Taipei Office) in Taiwan for hosting him during part of the80

preparation of this manuscript.81

PART I. SHEAF COHOMOLOGY, HYPERCOHOMOLOGY, AND THE PROJECTIVE82

CASE83

2.1 SHEAVES84

We assume a basic knowledge of sheaves as in [12, Chap. II, §1, pp. 60–69].85

2.1.1 The Étalé Space of a Presheaf86

Associated to a presheaf F on a topological space X is another topological space EF , called the

étalé space of F . Since the étalé space is needed in the construction of Godement’s canonical

resolution of a sheaf, we give a brief discussion here. As a set, the étalé space EF is the disjoint

union
∐

p∈X Fp of all the stalks of F . There is a natural projection map π : EF → X that maps

Fp to p. A section of the étalé space π : EF → X over U ⊂ X is a map s : U → EF such that

π ◦ s = idU , the identity map on U . For any open set U ⊂ X , element s ∈ F(U), and point p ∈ U ,

let sp ∈ Fp be the germ of s at p. Then the element s ∈ F(U) defines a section s̃ of the étalé space

over U ,

s̃ : U → EF ,

p 7→ sp ∈ Fp.

The collection87

{s̃(U) | U open in X, s ∈ F(U)}

of subsets of EF satisfies the conditions to be a basis for a topology on EF . With this topology, the88

étalé space EF becomes a topological space. By construction, the topological space EF is locally89

homeomorphic to X . For any element s ∈ F(U), the function s̃ : U → EF is a continuous section90

of EF . A section t of the étalé space EF is continuous if and only if every point p ∈ X has a91

neighborhood U such that t = s̃ on U for some s ∈ F(U).92

Let F+ be the presheaf that associates to each open subset U ⊂ X the abelian group93

F+(U) := {continuous sections t : U → EF}.

Under pointwise addition of sections, the presheaf F+ is easily seen to be a sheaf, called the94

sheafification or the associated sheaf of the presheaf F . There is an obvious presheaf morphism95

θ : F → F+ that sends a section s ∈ F(U) to the section s̃ ∈ F+(U).96
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EXAMPLE 2.1.1 For each open set U in a topological space X , let F(U) be the group of all97

constant real-valued functions on U . At each point p ∈ X , the stalk Fp is R. The étalé space EF98

is thus X × R, but not with its usual topology. A basis for EF consists of open sets of the form99

U × {r} for an open set U ⊂ X and a number r ∈ R. Thus, the topology on EF = X × R is the100

product topology of the given topology on X and the discrete topology on R. The sheafification F+
101

is the sheaf R of locally constant real-valued functions.102

EXERCISE 2.1.2 Prove that if F is a sheaf, then F ≃ F+. (Hint: The two sheaf axioms say103

precisely that for every open set U , the map F(U) → F+(U) is one-to-one and onto.)104

2.1.2 Exact Sequences of Sheaves105

From now on, we will consider only sheaves of abelian groups. A sequence of morphisms of sheaves106

of abelian groups107

· · · −→ F1 d1−→ F2 d2−→ F3 d3−→ · · ·

on a topological space X is said to be exact at Fk if Im dk−1 = ker dk; the sequence is said to108

be exact if it is exact at every Fk. The exactness of a sequence of morphisms of sheaves on X is109

equivalent to the exactness of the sequence of stalk maps at every point p ∈ X (see [12, Exercise110

1.2, p. 66]). An exact sequence of sheaves of the form111

0 → E → F → G → 0 (2.1.1)

is said to be a short exact sequence.112

It is not too difficult to show that the exactness of the sheaf sequence (2.1.1) over a topological113

space X implies the exactness of the sequence of sections114

0 → E(U) → F(U) → G(U) (2.1.2)

for every open set U ⊂ X , but that the last map F(U) → G(U) need not be surjective. In fact, as115

we will see in Theorem 2.2.8, the cohomology H1(U, E) is a measure of the nonsurjectivity of the116

map F(U) → G(U) of sections.117

Fix an open subset U of a topological space X . To every sheaf F of abelian groups on X , we can118

associate the abelian groupΓ(U,F) := F(U) of sections over U and to every sheaf map ϕ : F → G,119

the group homomorphism ϕU : Γ(U,F) → Γ(U,G). This makes Γ(U, ) a functor from sheaves of120

abelian groups on X to abelian groups.121

A functor F from the category of sheaves of abelian groups on X to the category of abelian122

groups is said to be exact if it maps a short exact sequence of sheaves123

0 → E → F → G → 0

to a short exact sequence of abelian groups124

0 → F (E) → F (F) → F (G) → 0.

If instead one has only the exactness of125

0 → F (E) → F (F) → F (G), (2.1.3)

then F is said to be a left-exact functor. The sections functor Γ(U, ) is left-exact but not exact.126

(By Proposition 2.2.2 and Theorem 2.2.8, the next term in the exact sequence (2.1.3) is the first127

cohomology group H1(U, E).)128
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2.1.3 Resolutions129

Recall that R is the sheaf of locally constant functions with values in R and Ak is the sheaf of130

smooth k-forms on a manifold M . The exterior derivative d : Ak(U) → Ak+1(U), as U ranges over131

all open sets in M , defines a morphism of sheaves d : Ak → Ak+1.132

PROPOSITION 2.1.3 On any manifold M of dimension n, the sequence of sheaves133

0 → R → A0 d
→ A1 d

→ · · ·
d
→ An → 0 (2.1.4)

is exact.134

PROOF. Exactness at A0 is equivalent to the exactness of the sequence of stalk maps Rp →135

A0
p

d
→ A1

p for all p ∈ M . Fix a point p ∈ M . Suppose [f ] ∈ A0
p is the germ of a C∞ function136

f : U → R, where U is a neighborhood of p, such that d[f ] = [0] in A1
p. Then there is a neighbor-137

hood V ⊂ U of p on which df ≡ 0. Hence, f is locally constant on V and [f ] ∈ Rp. Conversely, if138

[f ] ∈ Rp, then d[f ] = 0. This proves the exactness of the sequence (2.1.4) at A0.139

Next, suppose [ω] ∈ Ak
p is the germ of a smooth k-form ω on some neighborhood of p such140

that d[ω] = 0 ∈ Ak+1
p . This means there is a neighborhood V of p on which dω ≡ 0. By making141

V smaller, we may assume that V is contractible. By the Poincaré lemma [3, Cor. 4.1.1, p. 35], ω142

is exact on V , say ω = dτ for some τ ∈ Ak−1(V ). Hence, [ω] = d[τ ] in Ak
p . This proves the143

exactness of the sequence (2.1.4) at Ak for k > 0. �144

In general, an exact sequence of sheaves145

0 → A → F0 → F1 → F2 → · · ·

on a topological spaceX is called a resolution of the sheaf A. On a complex manifoldM of complex146

dimension n, the analogue of the Poincaré lemma is the ∂̄-Poincaré lemma [9, p. 25], from which it147

follows that for each fixed integer p ≥ 0, the sheaves Ap,q of smooth (p, q)-forms on M give rise to148

a resolution of the sheaf Ωp of holomorphic p-forms on M :149

0 → Ωp → Ap,0 ∂̄
→ Ap,1 ∂̄

→ · · ·
∂̄
→ Ap,n → 0. (2.1.5)

The cohomology of the Dolbeault complex150

0 → Ap,0(M)
∂̄
→ Ap,1(M)

∂̄
→ · · ·

∂̄
→ Ap,n(M) → 0

of smooth (p, q)-forms on M is by definition the Dolbeault cohomology Hp,q(M) of the complex151

manifold M . (For (p, q)-forms on a complex manifold, see [9] or Cattani’s article [5].)152

2.2 SHEAF COHOMOLOGY153

The de Rham cohomology H∗
dR(M) of a smooth n-manifold M is defined to be the cohomology of154

the de Rham complex155

0 → A0(M) → A1(M) → A2(M) → · · · → An(M) → 0
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of C∞ forms on M . De Rham’s theorem for a smooth manifold M of dimension n gives an iso-156

morphism between the real singular cohomology Hk(M,R) and and the de Rham cohomology of157

M (see [3, Th. 14.28, p. 175 and Th. 15.8, p. 191]). One obtains the de Rham complex A•(M) by158

applying the global sections functor Γ(M, ) to the resolution159

0 → R → A0 → A1 → A2 → · · · → An → 0,

of R, but omitting the initial term Γ(M,R). This suggests that the cohomology of a sheaf F might160

be defined as the cohomology of the complex of global sections of a certain resolution of F . Now161

every sheaf has a canonical resolution, its Godement resolution. Using the Godement resolution, we162

will obtain a well-defined cohomology theory of sheaves.163

2.2.1 Godement’s Canonical Resolution164

Let F be a sheaf of abelian groups on a topological space X . In Subsection 2.1.1, we defined the165

étalé space EF ofF . By Exercise 2.1.2, for any open set U ⊂ X , the groupF(U) may be interpreted166

as167

F(U) = F+(U) = {continuous sections of π : EF → X}.

Let C0F(U) be the group of all (not necessarily continuous) sections of the étalé space EF over U ;168

in other words, C0F(U) is the direct product
∏

p∈U Fp. In the literature, C0F is often called the169

sheaf of discontinuous sections of the étalé space EF of F . Then F+ ≃ F is a subsheaf of C0F170

and there is an exact sequence171

0 → F → C0F → Q1 → 0, (2.2.1)

where Q1 is the quotient sheaf C0F/F . Repeating this construction yields exact sequences

0 → Q1 →C0Q1 → Q2 → 0, (2.2.2)

0 → Q2 →C0Q2 → Q3 → 0, (2.2.3)

· · · .

The short exact sequences (2.2.1) and (2.2.2) can be spliced together to form a longer exact172

sequence173

0 // F // C0F //

!! !!❉
❉❉

❉❉
❉❉

❉ C1F // Q2 // 0

Q1

.

�

==③③③③③③③③

with C1F := C0Q1. Splicing together all the short exact sequences (2.2.1), (2.2.2), (2.2.3), · · · , and174

defining CkF := C0Qk results in the long exact sequence175

0 → F → C0F → C1F → C2F → · · · ,

called the Godement canonical resolution of F . The sheaves CkF are called the Godement sheaves176

of F . (The letter “C” stands for “canonical.”)177

Next we show that the Godement resolution F → C•F is functorial: a sheaf map ϕ : F → G178

induces a morphism ϕ∗ : C
•F → C•G of their Godement resolutions satisfying the two functorial179

properties: preservation of the identity and of composition.180
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A sheaf morphism (sheaf map) ϕ : E → F induces a sheaf morphism181

C0ϕ : C0E C0F//

∏
Ep

∏
Fp

and therefore a morphism of quotient sheaves182

C0E/E C0F/F ,//

Q1
E Q1

F

which in turn induces a sheaf morphism183

C1ϕ : C0Q1
E C0Q1

F .//

C1E C1F

By induction, we obtain Ckϕ : CkE → CkF for all k. It can be checked that each Ck( ) is a functor184

from sheaves to sheaves, called the kth Godement functor.185

Moreover, the induced morphisms Ckϕ fit into a commutative diagram186

0 // E //

��

C0E //

��

C1E //

��

C2E //

��

· · ·

0 // F // C0F // C1F // C2F // · · · ,

so that collectively (Ckϕ)∞k=0
is a morphism of Godement resolutions.187

PROPOSITION 2.2.1 If188

0 → E → F → G → 0

is a short exact sequence of sheaves on a topological space X and Ck( ) is the kth Godement sheaf189

functor, then the sequence of sheaves190

0 → CkE → CkF → CkG → 0

is exact.191

We say that the Godement functors Ck( ) are exact functors from sheaves to sheaves.192
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PROOF. For any point p ∈ X , the stalk Ep is a subgroup of the stalk Fp with quotient group193

Gp = Fp/Ep. Interpreting C0E(U) as the direct product
∏

p∈U Ep of stalks over U , it is easy to194

verify that for any open set U ⊂ X ,195

0 → C0E(U) → C0F(U) → C0G(U) → 0 (2.2.4)

is exact. In general, the direct limit of exact sequences is exact [2, Chap. 2, Exercise 19, p. 33].196

Taking the direct limit of (2.2.4) over all neighborhoods of a point p ∈ X , we obtain the exact197

sequence of stalks198

0 → (C0E)p → (C0F)p → (C0G)p → 0

for all p ∈ X . Thus, the sequence of sheaves199

0 → C0E → C0F → C0G → 0

is exact.200

Let QE be the quotient sheaf C0E/E , and similarly for QF and QG . Then there is a commutative201

diagram202

0

��

0

��

0

��
0 // E

��

// C0E

��

// QE

��

// 0

0 // F

��

// C0F

��

// QF

��

// 0

0 // G

��

// C0G

��

// QG

��

// 0,

0 0 0

(2.2.5)

in which the three rows and the first two columns are exact. It follows by the Nine Lemma that the203

last column is also exact.∗ Taking C0( ) of the last column, we obtain an exact sequence204

0 // C0QE
// C0QF

// C0QG
// 0.

C1E C1F C1G

The Godement resolution is created by alternately taking C0 and taking quotients. We have205

shown that each of these two operations preserves exactness. Hence, the proposition follows by206

induction. �207

∗To prove the Nine Lemma, view each column as a differential complex. Then the diagram (2.2.5) is a short exact

sequence of complexes. Since the cohomology groups of the first two columns are zero, the long exact cohomology sequence

of the short exact sequence implies that the cohomology of the third column is also zero [18, Th. 25.6, p. 285].
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2.2.2 Cohomology with Coefficients in a Sheaf208

Let F be a sheaf of abelian groups on a topological space X . What is so special about the Godement209

resolution of F is that it is completely canonical. For any open set U in X , applying the sections210

functor Γ(U, ) to the Godement resolution of F gives a complex211

0 → F(U) → C0F(U) → C1F(U) → C2F(U) → · · · . (2.2.6)

In general, the kth cohomology of a complex212

0 → K0 d
→ K1 d

→ K2 → · · ·

will be denoted by213

hk(K•) :=
ker(d : Kk → Kk+1)

Im(d : Kk−1 → Kk)
.

We sometimes write a complex (K•, d) not as a sequence, but as a direct sum K• =
⊕∞

k=0
Kk, with214

the understanding that d : Kk → Kk+1 increases the degree by 1 and d ◦ d = 0. The cohomology215

of U with coefficients in the sheaf F , or the sheaf cohomology of F on U , is defined to be the216

cohomology of the complex C•F(U) =
⊕

k≥0
CkF(U) of sections of the Godement resolution of217

F (with the initial term F(U) dropped from the complex (2.2.6)):218

Hk(U,F) := hk
(
C•F(U)

)
.

PROPOSITION 2.2.2 Let F be a sheaf on a topological space X . For any open set U ⊂ X , we219

have H0(U,F) = Γ(U,F).220

PROOF. If221

0 → F → C0F → C1F → C2F → · · ·

is the Godement resolution of F , then by definition222

H0(U,F) = ker
(
d : C0F(U) → C1F(U)

)
.

In the notation of the preceding subsection, d : C0F(U) → C1F(U) is induced from the composition223

of sheaf maps224

C0F ։ Q1 →֒ C1F .

Thus, d : C0F(U) → C1F(U) is the composition of225

C0F(U) → Q1(U) →֒ C1F(U).

Note that the second map Q1(U) →֒ C1F(U) is injective, because Γ(U, ) is a left-exact functor.

Hence,

H0(U,F) = ker
(
C0F(U) → C1F(U)

)

= ker
(
C0F(U) → Q1(U)

)
.

But from the exactness of226

0 → F(U) → C0F(U) → Q1(U),

we see that227

Γ(U,F) = F(U) = ker
(
C0F(U) → Q1(U)

)
= H0(U,F).

�228
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2.2.3 Flasque Sheaves229

Flasque sheaves are a special kind of sheaf with vanishing higher cohomology. All Godement230

sheaves turn out to be flasque sheaves.231

DEFINITION 2.2.3 A sheaf F of abelian groups on a topological space X is flasque (French for232

“flabby”) if for every open set U ⊂ X , the restriction map F(X) → F(U) is surjective.233

For any sheaf F , the Godement sheaf C0F is clearly flasque, because C0F(U) consists of all234

discontinuous sections of the étalé space EF over U . In the notation of the preceding subsection,235

CkF = C0Qk, so all Godement sheaves CkF are flasque.236

PROPOSITION 2.2.4 (i) In a short exact sequence of sheaves237

0 → E
i
→ F

j
→ G → 0 (2.2.7)

over a topological space X , if E is flasque, then for any open set U ⊂ X , the sequence of238

abelian groups239

0 → E(U) → F(U) → G(U) → 0

is exact.240

(ii) If E and F are flasque in (2.2.7), then G is flasque.241

(iii) If242

0 → E → L0 → L1 → L2 → · · · (2.2.8)

is an exact sequence of flasque sheaves on X , then for any open set U ⊂ X the sequence of243

abelian groups of sections244

0 → E(U) → L0(U) → L1(U) → L2(U) → · · · (2.2.9)

is exact.245

PROOF. (i) To simplify the notation, we will use i to denote iU : E(U) → F(U) for all U ;246

similarly, j = jU . As noted in Subsection 2.1.2, the exactness of247

0 → E(U)
i
→ F(U)

j
→ G(U) (2.2.10)

is true in general, whether E is flasque or not. To prove the surjectivity of j for a flasque E , let248

g ∈ G(U). Since F → G is surjective as a sheaf map, all stalk maps Fp → Gp are surjective. Hence,249

every point p ∈ U has a neighborhood Uα ⊂ U on which there exists a section fα ∈ F(Uα) such250

that j(fα) = g|Uα
.251

Let V be the largest union
⋃

α Uα on which there is a section fV ∈ F(V ) such that j(fV ) = g|V .252

We claim that V = U . If not, then there are a set Uα not contained in V and fα ∈ F(Uα) such that253

j(fα) = g|Uα
. On V ∩ Uα, writing j for jV ∩Uα

, we have254

j(fV − fα) = 0.
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By the exactness of the sequence (2.2.10) at F(V ∩ Uα),255

fV − fα = i(eV,α) for some eV,α ∈ E(V ∩ Uα).

Since E is flasque, one can find a section eU ∈ E(U) such that eU |V ∩Uα
= eV,α.256

On V ∩ Uα,257

fV = i(eV,α) + fα.

If we modify fα to258

f̄α = i(eU ) + fα on Uα,

then fV = f̄α on V ∩Uα, and j(f̄α) = g|Uα
. By the gluing axiom for the sheaf F , the elements fV259

and f̄α piece together to give an element f ∈ F(V ∪Uα) such that j(f) = g|V ∪Uα
. This contradicts260

the maximality of V . Hence, V = U and j : F(U) → G(U) is onto.261

(ii) Since E is flasque, for any open set U ⊂ X the rows of the commutative diagram262

0 // E(X)

α

��

// F(X)

β

��

jX // G(X)

γ

��

// 0

0 // E(U) // F(U)
jU // G(U) // 0

are exact by (i), where α, β, and γ are the restriction maps. Since F is flasque, the map β : F(X) →263

F(U) is surjective. Hence,264

jU ◦ β = γ ◦ jX : F(X) → G(X) → G(U)

is surjective. Therefore, γ : G(X) → G(U) is surjective. This proves that G is flasque.265

(iii) The long exact sequence (2.2.8) is equivalent to a collection of short exact sequences

0 → E →L0 → Q0 → 0, (2.2.11)

0 → Q0 →L1 → Q1 → 0, (2.2.12)

· · · .

In (2.2.11), the first two sheaves are flasque, so Q0 is flasque by (ii). Similarly, in (2.2.12), the first266

two sheaves are flasque, so Q1 is flasque. By induction, all the sheaves Qk are flasque.267

By (i), the functor Γ(U, ) transforms the short exact sequences of sheaves into short exact se-

quences of abelian groups

0 → E(U) →L0(U) → Q0(U) → 0,

0 → Q0(U) →L1(U) → Q1(U) → 0,

· · · .

These short exact sequences splice together into the long exact sequence (2.2.9). �268

COROLLARY 2.2.5 Let E be a flasque sheaf on a topological space X . For every open set U ⊂ X269

and every k > 0, the cohomology Hk(U, E) = 0.270
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PROOF. Let271

0 → E → C0E → C1E → C2E → · · ·

be the Godement resolution of E . It is an exact sequence of flasque sheaves. By Proposition 2.2.4(iii),272

the sequence of groups of sections273

0 → E(U) → C0E(U) → C1E(U) → C2E(U) → · · ·

is exact. It follows from the definition of sheaf cohomology that274

Hk(U, E) =

{
E(U) for k = 0,

0 for k > 0.

�275

A sheaf F on a topological space X is said to be acyclic on U ⊂ X if Hk(U,F) = 0 for all276

k > 0. Thus, a flasque sheaf on X is acyclic on every open set of X .277

EXAMPLE 2.2.6 Let X be an irreducible complex algebraic variety with the Zariski topology.278

Recall that the constant sheaf C over X is the sheaf of locally constant functions on X with values279

in C. Because any two open sets in the Zariski topology of X have a nonempty intersection, the only280

continuous sections of the constant sheaf C over any open set U are the constant functions. Hence,281

C is flasque. By Corollary 2.2.5, Hk(X,C) = 0 for all k > 0.282

COROLLARY 2.2.7 Let U be an open subset of a topological space X . The kth Godement sections283

functor Γ(U, Ck( )), which assigns to a sheaf F on X the group Γ(U, CkF) of sections of CkF over284

U , is an exact functor from sheaves on X to abelian groups.285

PROOF. Let286

0 → E → F → G → 0

be an exact sequence of sheaves. By Proposition 2.2.1, for any k ≥ 0,287

0 → CkE → CkF → CkG → 0

is an exact sequence of sheaves. Since CkE is flasque, by Proposition 2.2.4(i),288

0 → Γ(U, CkE) → Γ(U, CkF) → Γ(U, CkG) → 0

is an exact sequence of abelian groups. Hence, Γ
(
U, Ck( )

)
is an exact functor from sheaves to289

groups. �290

Although we do not need it, the following theorem is a fundamental property of sheaf cohomol-291

ogy.292

THEOREM 2.2.8 A short exact sequence293

0 → E → F → G → 0

of sheaves of abelian groups on a topological space X induces a long exact sequence in sheaf294

cohomology,295

· · · → Hk(X, E) → Hk(X,F) → Hk(X,G) → Hk+1(X, E) → · · · .
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PROOF. Because the Godement sections functorΓ
(
X, Ck( )

)
is exact, from the given short exact296

sequence of sheaves one obtains a short exact sequence of complexes of global sections of Godement297

sheaves298

0 → C•E(X) → C•F(X) → C•G(X) → 0.

The long exact sequence in cohomology [18, Section 25] associated to this short exact sequence of299

complexes is the desired long exact sequence in sheaf cohomology. �300

2.2.4 Cohomology Sheaves and Exact Functors301

As before, a sheaf will mean a sheaf of abelian groups on a topological space X . A complex of302

sheaves L• on X is a sequence of sheaves303

0 → L0 d
→ L1 d

→ L2 d
→ · · ·

on X such that d ◦ d = 0. Denote the kernel and image sheaves of L• by

Zk := Zk(L•) := ker
(
d : Lk → Lk+1

)
,

Bk := Bk(L•) := Im
(
d : Lk−1 → Lk

)
.

Then the cohomology sheaf Hk := Hk(L•) of the complex L• is the quotient sheaf304

Hk := Zk/Bk.

For example, by the Poincaré lemma, the complex305

0 → A0 → A1 → A2 → · · ·

of sheaves of C∞ forms on a manifold M has cohomology sheaves306

Hk = Hk(A•) =

{
R for k = 0,

0 for k > 0.

PROPOSITION 2.2.9 Let L• be a complex of sheaves on a topological space X . The stalk of its307

cohomology sheaf Hk at a point p is the kth cohomology of the complex L•
p of stalks.308

PROOF. Since309

Zk
p = ker

(
dp : L

k
p → Lk+1

p

)
and Bk

p = Im
(
dp : L

k−1
p → Lk

p

)

(see [12, Ch. II, Exercise 1.2(a), p. 66]), one can also compute the stalk of the cohomology sheaf Hk
310

by computing311

Hk
p = (Zk/Bk)p = Zk

p /B
k
p = hk(L•

p),

the cohomology of the sequence of stalk maps of L• at p. �312

Recall that a morphism ϕ : F• → G• of complexes of sheaves is a collection of sheaf maps313

ϕk : Fk → Gk such that ϕk+1
◦ d = d ◦ ϕk for all k. A morphism ϕ : F• → G• of complexes314

of sheaves induces morphisms ϕk : Hk(F•) → Hk(G•) of cohomology sheaves. The morphism315

ϕ : F• → G• of complexes of sheaves is called a quasi-isomorphism if the induced morphisms316

ϕk : Hk(F•) → Hk(G•) of cohomology sheaves are isomorphisms for all k.317
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PROPOSITION 2.2.10 Let L• =
⊕

k≥0
Lk be a complex of sheaves on a topological space X . If318

T is an exact functor from sheaves on X to abelian groups, then it commutes with cohomology:319

T
(
Hk(L•)

)
= hk

(
T (L•)

)
.

PROOF. We first prove that T commutes with cocycles and coboundaries. Applying the exact320

functor T to the exact sequence321

0 → Zk → Lk d
→ Lk+1

results in the exact sequence322

0 → T (Zk) → T (Lk)
d
→ T (Lk+1),

which proves that323

Zk
(
T (L•)

)
:= ker

(
T (Lk)

d
→ T (Lk+1)

)
= T (Zk).

(By abuse of notation, we write the differential of T (L•) also as d, instead of T (d).)324

The differential d : Lk−1 → Lk factors into a surjection Lk−1
։ Bk followed by an injection325

Bk →֒ Lk:326

Lk−1 d //

"" ""❊
❊❊

❊❊
❊❊

❊❊
Lk.

Bk
.

�

==⑤⑤⑤⑤⑤⑤⑤⑤

Since an exact functor preserves surjectivity and injectivity, applying T to the diagram above yields327

a commutative diagram328

T (Lk−1)
d //

$$ $$❏
❏❏

❏❏
❏❏

❏❏
T (Lk),

T (Bk)
::

::✈✈✈✈✈✈✈✈✈

which proves that329

Bk
(
T (L•)

)
:= Im

(
T (Lk−1)

d
→ T (Lk)

)
= T (Bk).

Applying the exact functor T to the exact sequence of sheaves330

0 → Bk → Zk → Hk → 0

gives the exact sequence of abelian groups331

0 → T (Bk) → T (Zk) → T (Hk) → 0.

Hence,332

T
(
Hk(L•)

)
= T (Hk) =

T (Zk)

T (Bk)
=

Zk
(
T (L•)

)

Bk
(
T (L•)

) = hk
(
T (L•)

)
.

�333
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2.2.5 Fine Sheaves334

We have seen that flasque sheaves on a topological space X are acyclic on any open subset of X .335

Fine sheaves constitute another important class of such sheaves.336

A sheaf map f : F → G over a topological space X induces at each point x ∈ X a group337

homomorphism fx : Fx → Gx of stalks. The support of the sheaf morphism f is defined to be338

supp f = {x ∈ X | fx 6= 0}.

If two sheaf maps over a topological space X agree at a point, then they agree in a neighborhood339

of that point, so the set where two sheaf maps agree is open in X . Since the complement X−supp f340

is the subset of X where the sheaf map f agrees with the zero sheaf map, it is open and therefore341

supp f is closed.342

DEFINITION 2.2.11 Let F be a sheaf of abelian groups on a topological space X and {Uα}343

a locally finite open cover of X . A partition of unity of F subordinate to {Uα} is a collection344

{ηα : F → F} of sheaf maps such that345

(i) supp ηα ⊂ Uα,346

(ii) for each point x ∈ X , the sum
∑

ηα,x = idFx
, the identity map on the stalk Fx.347

Note that although α may range over an infinite index set, the sum in (ii) is a finite sum, because348

x has a neighborhood that meets only finitely many of the Uα’s and supp ηα ⊂ Uα.349

DEFINITION 2.2.12 A sheaf F on a topological space X is said to be fine if for every locally finite350

open cover {Uα} of X , the sheaf F admits a partition of unity subordinate to {Uα}.351

PROPOSITION 2.2.13 The sheaf Ak of smooth k-forms on a manifold M is a fine sheaf on M .352

PROOF. Let {Uα} be a locally finite open cover of M . Then there is a C∞ partition of unity353

{ρα} on M subordinate to {Uα} [18, Appendix C, p. 346]. (This partition of unity {ρα} is a354

collection of smooth R-valued functions, not sheaf maps.) For any open set U ⊂ M , define355

ηα,U : Ak(U) → Ak(U) by356

ηα,U (ω) = ραω.

If x /∈ Uα, then x has a neighborhood U disjoint from supp ρα. Hence, ρα vanishes identically357

on U and ηα,U = 0, so that the stalk map ηα,x : A
k
x → Ak

x is the zero map. This proves that358

supp ηα ⊂ Uα.359

For any x ∈ M , the stalk map ηα,x is multiplication by the germ of ρα, so
∑

α ηα,x is the identity360

map on the stalk Ak
x. Hence, {ηα} is a partition of unity of the sheaf Ak subordinate to {Uα}. �361

Let R be a sheaf of commutative rings on a topological space X . A sheaf F of abelian groups362

on X is called a sheaf of R-modules (or simply an R-module) if for every open set U ⊂ X , the363

abelian group F(U) has an R(U)-module structure and moreover, for all V ⊂ U , the restriction364

map F(U) → F(V ) is compatible with the module structure in the sense that the diagram365

R(U) ×F(U)

��

// F(U)

��
R(V )×F(V ) // F(V )
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commutes.366

A morphism ϕ : F → G of sheaves of R-modules over X is a sheaf morphism such that for367

each open set U ⊂ X , the group homomorphism ϕU : F(U) → G(U) is an R(U)-module homo-368

morphism.369

If A0 is the sheaf of C∞ functions on a manifold M , then the sheaf Ak of smooth k-forms370

on M is a sheaf of A0-modules. By a proof analogous to that of Proposition 2.2.13, any sheaf of371

A0-modules over a manifold is a fine sheaf. In particular, the sheaves Ap,q of smooth (p, q)-forms372

on a complex manifold are all fine sheaves.373

2.2.6 Cohomology with Coefficients in a Fine Sheaf374

A topological space X is paracompact if every open cover of X admits a locally finite open re-375

finement. In working with fine sheaves, one usually has to assume that the topological space is376

paracompact, in order to be assured of the existence of a locally finite open cover. A common and377

important class of paracompact spaces is the class of topological manifolds [20, Lemma 1.9, p. 9].378

A fine sheaf is generally not flasque. For example, f(x) = secx is a C∞ function on the379

open interval U = ] − π/2, π/2[ that cannot be extended to a C∞ function on R. This shows that380

A0(R) → A0(U) is not surjective. Thus, the sheaf A0 of C∞ functions is a fine sheaf that is not381

flasque.382

While flasque sheaves are useful for defining cohomology, fine sheaves are more prevalent in383

differential topology. Although fine sheaves need not be flasque, they share many of the properties384

of flasque sheaves. For example, on a manifold, Proposition 2.2.4 and Corollary 2.2.5 remain true if385

the sheaf E is fine instead of flasque.386

PROPOSITION 2.2.14 (i) In a short exact sequence of sheaves387

0 → E → F → G → 0 (2.2.13)

of abelian groups over a paracompact space X , if E is fine, the sequence of abelian groups of388

global sections389

0 → E(X)
i
→ F(X)

j
→ G(X) → 0

is exact.390

In (ii) and (iii), assume that every open subset of X is paracompact (a manifold is an example of391

such a space X).392

(ii) If E is fine and F is flasque in (2.2.13), then G is flasque.393

(iii) If394

0 → E → L0 → L1 → L2 → · · ·

is an exact sequence of sheaves on X in which E is fine and all the Lk are flasque, then for395

any open set U ⊂ X , the sequence of abelian groups396

0 → E(U) → L0(U) → L1(U) → L2(U) → · · ·

is exact.397
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PROOF. To simplify the notation, iU : E(U) → F(U) will generally be denoted by i. Similarly,398

“fα on Uαβ” will mean fα|Uαβ
. As in Proposition 2.2.4(i), it suffices to show that if E is a fine399

sheaf, then j : F(X) → G(X) is surjective. Let g ∈ G(X). Since Fp → Gp is surjective for all400

p ∈ X , there exist an open cover {Uα} of X and elements fα ∈ F(Uα) such that j(fα) = g|Uα
.401

By the paracompactness of X , we may assume that the open cover {Uα} is locally finite. On402

Uαβ := Uα ∩ Uβ ,403

j(fα|Uαβ
− fβ|Uαβ

) = j(fα)|Uαβ
− j(fβ)|Uαβ

= g|Uαβ
− g|Uαβ

= 0.

By the exactness of the sequence404

0 → E(Uαβ)
i
→ F(Uαβ)

j
→ G(Uαβ),

there is an element eαβ ∈ E(Uαβ) such that on Uαβ ,405

fα − fβ = i(eαβ).

Note that on the triple intersection Uαβγ := Uα ∩ Uβ ∩ Uγ , we have406

i(eαβ + eβγ) = fα − fβ + fβ − fγ = i(eαγ).

Since E is a fine sheaf, it admits a partition of unity {ηα} subordinate to {Uα}. We will now407

view an element of E(U) for any open set U as a continuous section of the étalé space EE over U .408

Then the section ηγ(eαγ) ∈ E(Uαγ) can be extended by zero to a continuous section of EE over Uα:409

ηγeαγ(p) =

{
(ηγeαγ)(p) for p ∈ Uαγ ,

0 for p ∈ Uα − Uαγ .

(Proof of the continuity of ηγeαγ : On Uαγ , ηγeαγ is continuous. If p ∈ Uα − Uαγ , then p /∈ Uγ , so410

p /∈ supp ηγ . Since supp ηγ is closed, there is an open set V containing p such that V ∩supp ηγ = ∅.411

Thus, ηγeαγ = 0 on V , which proves that ηγeαγ is continuous at p.)412

To simplify the notation, we will omit the overbar and write ηγeαγ ∈ E(Uα) also for the exten-413

sion by zero of ηγeαγ ∈ E(Uαγ). Let eα be the locally finite sum414

eα =
∑

γ

ηγeαγ ∈ E(Uα).

On the intersection Uαβ ,

i(eα − eβ) = i
(∑

γ

ηγeαγ −
∑

γ

ηγeβγ

)
= i
(∑

γ

ηγ(eαγ − eβγ)
)

= i
(∑

γ

ηγeαβ

)
= i(eαβ) = fα − fβ .

Hence, on Uαβ ,415

fα − i(eα) = fβ − i(eβ).
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By the gluing sheaf axiom for the sheaf F , there is an element f ∈ F(X) such that f |Uα
=416

fα − i(eα). Then417

j(f)|Uα
= j(fα) = g|Uα

for all α.

By the uniqueness sheaf axiom for the sheaf G, we have j(f) = g ∈ G(X). This proves the418

surjectivity of j : F(X) → G(X).419

(ii), (iii) Assuming that every open subset U of X is paracompact, we can apply (i) to U . Then the420

proofs of (ii) and (iii) are the same as in Proposition 2.2.4(ii), (iii). �421

The analogue of Corollary 2.2.5 for E a fine sheaf then follows as before. The upshot is the422

following theorem.423

THEOREM 2.2.15 Let X be a topological space in which every open subset is paracompact. Then424

a fine sheaf on X is acyclic on every open subset U .425

REMARK 2.2.16 Sheaf cohomology can be characterized uniquely by a set of axioms [20, Defini-426

tion 5.18, pp. 176–177]. Both the sheaf cohomology in terms of Godement’s resolution and the Čech427

cohomology of a paracompact Hausdorff space satisfy these axioms [20, pp. 200–204], so at least428

on a paracompact Hausdorff space, sheaf cohomology is isomorphic to Čech cohomology. Since the429

Čech cohomology of a triangularizable space with coefficients in the constant sheaf Z is isomorphic430

to its singular cohomology with integer coefficients [3, Th. 15.8, p. 191], the sheaf cohomology431

Hk(M,Z) of a manifold M is isomorphic to the singular cohomology Hk(M,Z). In fact, the same432

argument shows that one may replace Z by R or by C.433

2.3 COHERENT SHEAVES AND SERRE’S GAGA PRINCIPLE434

Given two sheaves F and G on X , it is easy to show that the presheaf U 7→ F(U)⊕G(U) is a sheaf,435

called the direct sum of F and G and denoted by F ⊕G. We write the direct sum of p copies of F as436

F⊕p. If U is an open subset of X , the restriction F|U of the sheaf F to U is the sheaf on U defined437

by (F|U )(V ) = F(V ) for every open subset V of U . Let R be a sheaf of commutative rings on a438

topological space X . A sheaf F of R-modules on M is locally free of rank p if every point x ∈ M439

has a neighborhood U on which there is a sheaf isomorphism F|U ≃ R|⊕p
U .440

Given a complex manifold M , let OM be its sheaf of holomorphic functions. When understood441

from the context, the subscript M is usually suppressed and OM is simply written O. A sheaf of442

O-modules on a complex manifold is also called an analytic sheaf .443

EXAMPLE 2.3.1 On a complex manifoldM of complex dimension n, the sheafΩk of holomorphic444

k-forms is an analytic sheaf. It is locally free of rank
(
n
k

)
, with local frame {dzi1 ∧ · · · ∧ dzik} for445

1 ≤ i1 < · · · < ik ≤ n.446

EXAMPLE 2.3.2 The sheaf O∗ of nowhere-vanishing holomorphic functions with point wise mul-447

tiplication on a complex manifoldM is not an analytic sheaf, since multiplying a nowhere-vanishing448

function f ∈ O∗(U) by the zero function 0 ∈ O(U) will result in a function not in O∗(U).449

Let R be a sheaf of commutative rings on a topological space X , let F be a sheaf of R-modules

on X , and let f1, . . . , fn be sections of F over an open set U in X . For any r1, . . . , rn ∈ R(U), the
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map

R⊕n(U) → F(U),

(r1, . . . , rn) 7→
∑

rifi

defines a sheaf map ϕ : R⊕n|U → F|U over U . The kernel of ϕ is a subsheaf of (R|U )
⊕n called450

the sheaf of relations among f1, . . . , fn, denoted by S(f1, . . . , fn). We say that F|U is generated451

by f1, . . . , fn if ϕ : R⊕n → F is surjective over U .452

A sheaf F of R-modules on X is said to be of finite type if every x ∈ X has a neighborhood U453

on which F is generated by finitely many sections f1, . . . , fn ∈ F(U). In particular, then, for every454

y ∈ U , the values f1,y, . . . , fn,y ∈ Fy generate the stalk Fy as an Ry-module.455

DEFINITION 2.3.3 A sheaf F of R-modules on a topological space X is coherent if456

(i) F is of finite type, and457

(ii) for any open set U ⊂ X and any collection of sections f1, . . . , fn ∈ F(U), the sheaf458

S(f1, . . . , fn) of relations among f1, . . . , fn is of finite type over U .459

THEOREM 2.3.4 (i) The direct sum of finitely many coherent sheaves is coherent.460

(ii) The kernel, image, and cokernel of a morphism of coherent sheaves are coherent.461

PROOF. For a proof, see Serre [15, Subsection 13, Theorems 1 and 2, pp. 208–209]. �462

A sheaf F of R-modules on a topological space X is said to be locally finitely presented if every463

x ∈ X has a neighborhood U on which there is an exact sequence of the form464

R| ⊕q
U → R| ⊕p

U → F|U → 0;

in this case, we say that F has a finite presentation or that F is finitely presented on U . If F is a465

coherent sheaf of R-modules on X , then it is locally finitely presented.466

Remark. Having a finite presentation locally is a consequence of coherence, but is not equivalent467

to it. Having a finite presentation means that for one set of generators of F , the sheaf of relations468

among them is finitely generated. Coherence is a stronger condition in that it requires the sheaf of469

relations among any set of elements of F to be finitely generated.470

A sheaf R of rings on X is clearly a sheaf of R-modules of finite type. For it to be coherent,471

for any open set U ⊂ X and any sections f1, . . . , fn, the sheaf S(f1, . . . , fn) of relations among472

f1, . . . , fn must be of finite type.473

EXAMPLE 2.3.5 If OM is the sheaf of holomorphic functions on a complex manifold M , then474

OM is a coherent sheaf of OM -modules (Oka’s theorem [4, §5]).475

EXAMPLE 2.3.6 If OX is the sheaf of regular functions on an algebraic variety X , then OX is a476

coherent sheaf of OX -modules (Serre [15, §37, Proposition 1]).477

A sheaf of OX -modules on an algebraic variety is called an algebraic sheaf .478
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EXAMPLE 2.3.7 On a smooth variety X of dimension n, the sheaf Ωk of algebraic k-forms is an479

algebraic sheaf. It is locally free of rank
(
n
k

)
[17, Ch. III, Th. 2, p. 200].480

THEOREM 2.3.8 Let R be a coherent sheaf of rings on a topological space X . Then a sheaf F of481

R-modules on X is coherent if and only if it is locally finitely presented.482

PROOF. (⇒) True for any coherent sheaf of R-modules, whether R is coherent or not.483

(⇐) Suppose there is an exact sequence484

R⊕q → R⊕p → F → 0

on an open set U in X . Since R is coherent, by Theorem 2.3.4 so are R⊕p, R⊕q , and the cokernel485

F of R⊕q → R⊕p. �486

Since the structure sheaves OX or OM of an algebraic variety X or of a complex manifold M487

are coherent, an algebraic or analytic sheaf is coherent if and only if it is locally finitely presented.488

EXAMPLE 2.3.9 A locally free analytic sheaf F over a complex manifold M is automatically489

coherent, since every point p has a neighborhood U on which there is an exact sequence of the form490

0 → O⊕p
U → F|U → 0,

so that F|U is finitely presented.491

For our purposes, we define a Stein manifold to be a complex manifold that is biholomorphic to492

a closed submanifold of CN (this is not the usual definition, but is equivalent to it [14, p. 114]). In493

particular, a complex submanifold of CN defined by finitely many holomorphic functions is a Stein494

manifold. One of the basic theorems about coherent analytic sheaves is Cartan’s Theorem B.495

THEOREM 2.3.10 (Cartan’s Theorem B) A coherent analytic sheaf F is acyclic on a Stein mani-496

fold M , i.e., Hq(M,F) = 0 for all q ≥ 1.497

For a proof, see [11, Th. 14, p. 243].498

Let X be a smooth quasiprojective variety defined over the complex numbers and endowed with499

the Zariski topology. The underlying set of X with the complex topology is a complex manifoldXan.500

Similarly, if U is a Zariski open subset of X , let Uan be the underlying set of U with the complex501

topology. Since Zariski open sets are open in the complex topology, Uan is open in Xan.502

Denote by OXan
the sheaf of holomorphic functions on Xan. If F is a coherent algebraic sheaf503

on X , then X has an open cover {U} by Zariski open sets such that on each open set U there is an504

exact sequence505

O⊕q
U → O⊕p

U → F|U → 0

of algebraic sheaves. Moreover, {Uan} is an open cover of Xan and the morphism O⊕q
U → O⊕p

U of506

algebraic sheaves induces a morphism O⊕q
Uan

→ O⊕p
Uan

of analytic sheaves. Hence, there is a coherent507

analytic sheaf Fan on the complex manifold Xan defined by508

O⊕q
Uan

→ O⊕p
Uan

→ Fan|Uan
→ 0.
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(Rename the open cover {Uan} as {Uα}α∈A. A section of Fan over an open set V ⊂ Xan is a509

collection of sections sα ∈ (Fan|Uα
)(Uα ∩ V ) that agree on all pairwise intersections (Uα ∩ V ) ∩510

(Uβ ∩ V ).)511

In this way one obtains a functor ( )an from the category of smooth complex quasiprojective512

varieties and coherent algebraic sheaves to the category of complex manifolds and analytic sheaves.513

Serre’s GAGA (“Géométrie algébrique et géométrie analytique”) principle [16] asserts that for514

smooth complex projective varieties, the functor ( )an is an equivalence of categories and moreover,515

for all q, there are isomorphisms of cohomology groups516

Hq(X,F) ≃ Hq(Xan,Fan), (2.3.1)

where the left-hand side is the sheaf cohomology of F on X endowed with the Zariski topology and517

the right-hand side is the sheaf cohomology of Fan on Xan endowed with the complex topology.518

When X is a smooth complex quasiprojective variety, to distinguish between sheaves of alge-519

braic and sheaves of holomorphic forms, we write Ωp
alg for the sheaf of algebraic p-forms on X and520

Ωp
an for the sheaf of holomorphic p-forms on Xan (for the definition of algebraic forms, see the In-521

troduction). If z1, . . . , zn are local parameters for X [17, Chap. II, §2.1, p. 98], then both Ωp
alg and522

Ωp
an are locally free with frame {dzi1 ∧ · · · ∧ dzip}, where I = (i1, . . . , ip) is a strictly increasing523

multi-index between 1 and n inclusive. (For the algebraic case, see [17, vol. 1, Chap. III, §5.4, Th. 4,524

p. 203].) Hence, locally there are sheaf isomorphisms525

0 → O
(np)
U → Ωp

alg|U → 0 and 0 → O
(np)
Uan

→ Ωp
an|Uan

→ 0,

which show that Ωp
an is the coherent analytic sheaf associated to the coherent algebraic sheaf Ωp

alg.526

Let k be a field. An affine closed set in kN is the zero set of finitely many polynomials on kN ,527

and an affine variety is an algebraic variety biregular to an affine closed set. The algebraic analogue528

of Cartan’s Theorem B is the following vanishing theorem of Serre for an affine variety [15, §44,529

Cor. 1, p. 237].530

THEOREM 2.3.11 (Serre) A coherent algebraic sheaf F on an affine variety X is acyclic on X ,531

i.e., Hq(X,F) = 0 for all q ≥ 1.532

2.4 THE HYPERCOHOMOLOGY OF A COMPLEX OF SHEAVES533

This section requires some knowledge of double complexes and their associated spectral sequences.534

One possible reference is [3, Chapters 2 and 3]. The hypercohomology of a complex L• of sheaves535

of abelian groups on a topological space X generalizes the cohomology of a single sheaf. To define536

it, first form the double complex of global sections of the Godement resolutions of the sheaves Lq:537

K =
⊕

p,q

Kp,q =
⊕

p,q

Γ(X, CpLq).

This double complex comes with two differentials, a horizontal differential538

δ : Kp,q → Kp+1,q
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induced from the Godement resolution and a vertical differential539

d : Kp,q → Kp,q+1

induced from the complex L•. Since the differential d : Lq → Lq+1 induces a morphism of com-540

plexes C•Lq → C•Lq+1, where C• is the Godement resolution, the vertical differential in the double541

complex K commutes with the horizontal differential. The hypercohomology H∗(X,L•) of the542

complex L• is the total cohomology of the double complex, i.e., the cohomology of the associated543

single complex544

K• =
⊕

Kk =
⊕

k

⊕

p+q=k

Kp,q

with differential D = δ + (−1)pd:545

H
k(X,L•) = Hk

D(K•).

If the complex of sheaves L• consists of a single sheaf L0 = F in degree 0,546

0 → F → 0 → 0 → · · · ,

then the double complex
⊕

Kp,q =
⊕

Γ(X, CpLq) has nonzero entries only in the zeroth row,547

which is simply the complex of sections of the Godement resolution of F :548

K =

0 1 2

Γ(X, C0F) Γ(X, C1F) Γ(X, C2F)

0 0 0

0 0 0

p

q

549

In this case, the associated single complex is the complex Γ(X, C•F) of global sections of the550

Godement resolution of F , and the hypercohomology of L• is the sheaf cohomology of F :551

H
k(X,L•) = hk

(
Γ(X, C•F)

)
= Hk(X,F). (2.4.1)

It is in this sense that hypercohomology generalizes sheaf cohomology.552

2.4.1 The Spectral Sequences of Hypercohomology553

Associated to any double complex (K , d, δ) with commuting differentials d and δ are two spectral554

sequences converging to the total cohomology H∗
D(K). One spectral sequence starts with E1 = Hd555

and E2 = HδHd. By reversing the roles of d and δ, we obtain a second spectral sequence with556

E1 = Hδ and E2 = HdHδ (see [3, Chap. II]). By the usual spectral sequence of a double complex,557

we will mean the first spectral sequence, with the vertical differential d as the initial differential.558

In the category of groups, the E∞ term is the associated graded group of the total cohomology559

H∗
D(K) relative to a canonically defined filtration and is not necessarily isomorphic to H∗

D(K)560

because of the extension phenomenon in group theory.561



THE ALGEBRAIC DE RHAM THEOREM BY F. EL ZEIN AND L. TU

ch2˙elzein˙tu˙6sep September 6, 2013 6x9

23

Fix a nonnegative integer p and let T = Γ
(
X, Cp( )

)
be the Godement sections functor that562

associates to a sheaf F on a topological space X the group of sections Γ(X, CpF) of the Godement563

sheaf CpF . Since T is an exact functor by Corollary 2.2.7, by Proposition 2.2.10 it commutes with564

cohomology:565

hq
(
T (L•)

)
= T

(
Hq(L•)

)
, (2.4.2)

where Hq := Hq(L•) is the qth cohomology sheaf of the complexL• (see Subsection 2.2.4). For the

double complex K =
⊕

Γ(X, CpLq), the E1 term of the first spectral sequence is the cohomology

of K with respect to the vertical differential d. Thus, Ep,q
1

= Hp,q
d is the qth cohomology of the pth

column Kp,• = Γ
(
X, Cp(L•)

)
of K:

Ep,q
1 = Hp,q

d = hq(Kp,•) = hq
(
Γ(X, CpL•)

)

= hq
(
T (L•)

)
(definition of T )

= T
(
Hq(L•)

)
(by (2.4.2))

= Γ(X, CpHq). (definition of T )

Hence, the E2 term of the first spectral sequence is566

Ep,q
2 = Hp,q

δ (E1) = Hp,q
δ H•,•

d = hp
δ(H

•,q
d ) = hp

δ

(
Γ(X, C•Hq)

)
= Hp(X,Hq) . (2.4.3)

Note that the qth row of the double complex
⊕

Kp,q =
⊕

Γ(X, CpLq) calculates the sheaf567

cohomology of Lq on X . Thus, the E1 term of the second spectral sequence is568

Ep,q
1 = Hp,q

δ = hp
δ(K

•,q) = hp
δ

(
Γ(X, C•Lq)

)
= Hp(X,Lq) (2.4.4)

and the E2 term is569

Ep,q
2 = Hp,q

d (E1) = Hp,q
d H•,•

δ = hq
d

(
Hp,•

δ

)
= hq

d

(
Hp(X,L•)

)
.

THEOREM 2.4.1 A quasi-isomorphism F• → G• of complexes of sheaves of abelian groups over570

a topological space X (see p. 13) induces a canonical isomorphism in hypercohomology:571

H
∗(X,F•)

∼
→ H

∗(X,G•).

PROOF. By the functoriality of the Godement sections functors, a morphism F• → G• of com-572

plexes of sheaves induces a homomorphism Γ(X, CpFq) → Γ(X, CpGq) that commutes with the573

two differentials d and δ and hence induces a homomorphism H∗(X,F•) → H∗(X,G•) in hyper-574

cohomology.575

Since the spectral sequence construction is functorial, the morphism F• → G• also induces a

morphism Er(F
•) → Er(G

•) of spectral sequences and a morphism of the filtrations

Fp

(
HD(KF•)

)
→ Fp

(
HD(KG•)

)

on the hypercohomology of F• and G•. We will shorten the notation Fp

(
HD(KF•)

)
to Fp(F

•).576

By definition, the quasi-isomorphismF• → G• induces an isomorphism of cohomology sheaves577

H∗(F•)
∼
→ H∗(G•), and by (2.4.3) an isomorphism of the E2 terms of the first spectral sequences578

of F• and of G•:579

Ep,q
2 (F•) = Hp

(
X,Hq(F•)

) ∼
→ Hp

(
X,Hq(G•)

)
= Ep,q

2 (G•).
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An isomorphism of the E2 terms induces an isomorphism of the E∞ terms:580

⊕

p

Fp(F
•)

Fp+1(F•)
= E∞(F•)

∼
→ E∞(G•) =

⊕

p

Fp(G
•)

Fp+1(G•)
.

We claim that in fact, the canonical homomorphism H∗(X,F•) → H∗(X,G•) is an isomor-

phism. Fix a total degree k and let F k
p (F

•) = Fp(F
•) ∩Hk(X,F•). Since

K•,•(F•) =
⊕

Γ(X, CpFq)

is a first-quadrant double complex, the filtration {F k
p (F

•)}p on Hk(X,F•) is finite in length:581

H
k(X,F•) = F k

0 (F
•) ⊃ F k

1 (F
•) ⊃ · · · ⊃ F k

k (F
•) ⊃ F k

k+1(F
•) = 0.

A similar finite filtration {F k
p (G

•)}p exists on H
k(X,G•).582

Suppose F k
p (F

•) → F k
p (G

•) is an isomorphism. We will prove that F k
p−1(F

•) → F k
p−1(G

•) is583

an isomorphism. In the commutative diagram584

0 // F k
p (F

•) //

��

F k
p−1(F

•) //

��

F k
p−1(F

•)/F k
p (F

•) //

��

0

0 // F k
p (G

•) // F k
p−1(G

•) // F k
p−1(G

•)/F k
p (G

•) // 0,

the two outside vertical maps are isomorphisms, by the induction hypothesis and because F• → G•
585

induces an isomorphism of the associated graded groups. By the Five Lemma, the middle vertical586

map F k
p−1(F

•) → F k
p−1(G

•) is also an isomorphism. By induction on the filtration subscript p, as587

p moves from k + 1 to 0, we conclude that588

H
k(X,F•) = F k

0 (F
•) → F k

0 (G
•) = H

k(X,G•)

is an isomorphism. �589

THEOREM 2.4.2 If L• is a complex of acyclic sheaves of abelian groups on a topological space X ,590

then the hypercohomology of L• is isomorphic to the cohomology of the complex of global sections591

of L•:592

H
k(X,L•) ≃ hk

(
L•(X)

)
,

where L•(X) denotes the complex593

0 → L0(X) → L1(X) → L2(X) → · · · .

PROOF. Let K be the double complex K =
⊕

Kp,q =
⊕

CpLq(X). Because each Lq is594

acyclic on X , in the second spectral sequence of K , by (2.4.4) the E1 term is595

Ep,q
1 = Hp(X,Lq) =

{
Lq(X) for p = 0,

0 for p > 0.
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Hd =

0 1 2

L0(X) 0 0

L1(X) 0 0

L2(X) 0 0

p

q

596

Hence,597

Ep,q
2 = Hp,q

d Hδ =

{
hq
(
L•(X)

)
for p = 0,

0 for p > 0.

Therefore, the spectral sequence degenerates at the E2 term and598

H
k(X,L•) ≃ E0,k

2 = hk
(
L•(X)

)
.

�599

2.4.2 Acyclic Resolutions600

Let F be a sheaf of abelian groups on a topological space X . A resolution601

0 → F → L0 → L1 → L2 → · · ·

of F is said to be acyclic on X if each sheaf Lq is acyclic on X , i.e., Hk(X,Lq) = 0 for all k > 0.602

If F is a sheaf on X , we will denote by F• the complex of sheaves such that F0 = F and603

Fk = 0 for k > 0.604

THEOREM 2.4.3 If 0 → F → L• is an acyclic resolution of the sheaf F on a topological space605

X , then the cohomology of F can be computed from the complex of global sections of L•:606

Hk(X,F) ≃ hk
(
L•(X)

)
.

PROOF. The resolution 0 → F → L• may be viewed as a quasi-isomorphism of the two com-607

plexes608

0 // F

��

// 0

��

// 0

��

// · · ·

0 // L0 // L1 // L2 // · · · ,

since609

H0(top row) = H0(F•) = F ≃ Im(F → L0) = ker(L0 → L1) = H0(bottom row)

and the higher cohomology sheaves of both complexes are zero. By Theorem 2.4.1, there is an610

induced morphism in hypercohomology611

H
k(X,F•) ≃ H

k(X,L•).
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The left-hand side is simply the sheaf cohomology Hk(X,F) by (2.4.1). By Theorem 2.4.2, the612

right-hand side is hk(L•(X)). Hence,613

Hk(X,F) ≃ hk
(
L•(X)

)
.

�614

So in computing sheaf cohomology any acyclic resolution of F on a topological space X can615

take the place of the Godement resolution.616

Using acyclic resolutions, we can give simple proofs of de Rham’s and Dolbeault’s theorems.617

EXAMPLE 2.4.4 De Rham’s theorem. By the Poincaré lemma ([3, §4, p. 33], [9, p. 38]), on a C∞
618

manifold M the sequence of sheaves619

0 → R → A0 → A1 → A2 → · · · (2.4.5)

is exact. Since each Ak is fine and hence acyclic on M , (2.4.5) is an acyclic resolution of R. By620

Theorem 2.4.3,621

H∗(M,R) ≃ h∗
(
A•(M)

)
= H∗

dR(M).

Because the sheaf cohomologyH∗(M,R) of a manifold is isomorphic to the real singular cohomol-622

ogy of M (Remark 2.2.16), de Rham’s theorem follows.623

EXAMPLE 2.4.5 Dolbeault’s theorem. According to the ∂̄-Poincaré lemma [9, p. 25, p. 38], on a624

complex manifold M the sequence of sheaves625

0 → Ωp → Ap,0 ∂̄
→ Ap,1 ∂̄

→ Ap,2 → · · ·

is exact. As in the previous example, because each sheaf Ap,q is fine and hence acyclic, by Theo-626

rem 2.4.3,627

Hq(M,Ωp) ≃ hq
(
Ap,•(M)

)
= Hp,q(M).

This is the Dolbeault isomorphism for a complex manifold M .628

2.5 THE ANALYTIC DE RHAM THEOREM629

The analytic de Rham theorem is the analogue of the classical de Rham theorem for a complex630

manifold, according to which the singular cohomology with C coefficients of any complex manifold631

can be computed from its sheaves of holomorphic forms. Because of the holomorphic Poincaré632

lemma, the analytic de Rham theorem is far easier to prove than its algebraic counterpart.633

2.5.1 The Holomorphic Poincaré Lemma634

Let M be a complex manifold and Ωk
an the sheaf of holomorphic k-forms on M . Locally, in terms635

of complex coordinates z1, . . . , zn, a holomorphic form can be written as
∑

aI dzi1 ∧ · · · ∧ dzin ,636

where the aI are holomorphic functions. Since for a holomorphic function aI ,637

daI = ∂aI + ∂̄aI =
∑

i

∂aI
∂zi

dzi +
∑

i

∂aI
∂z̄i

dz̄i =
∑

i

∂aI
∂zi

dzi,
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the exterior derivative d maps holomorphic forms to holomorphic forms. Note that aI is holomorphic638

if and only if ∂̄aI = 0.639

THEOREM 2.5.1 (Holomorphic Poincaré lemma) On a complex manifold M of complex dimen-640

sion n, the sequence641

0 → C → Ω0
an

d
→ Ω1

an

d
→ · · · → Ωn

an → 0

of sheaves is exact.642

PROOF. We will deduce the holomorphic Poincaré lemma from the smooth Poincaré lemma and

the ∂̄-Poincaré lemma by a double complex argument. The double complex
⊕

Ap,q of sheaves of

smooth (p, q)-forms has two differentials ∂ and ∂̄. These differentials anticommute because

0 = d ◦ d = (∂ + ∂̄)(∂ + ∂̄) = ∂2 + ∂̄∂ + ∂∂̄ + ∂̄2

= ∂̄∂ + ∂∂̄.

The associated single complex
⊕

Ak
C

, where Ak
C
=
⊕

p+q=k A
p,q with differential d = ∂ + ∂̄, is643

simply the usual complex of sheaves of smooth C-valued differential forms on M . By the smooth644

Poincaré lemma,645

Hk
d(A

•
C) =

{
C for k = 0,

0 for k > 0.

By the ∂̄-Poincaré lemma, the sequence646

0 → Ωp
an → Ap,0 ∂̄

→ Ap,1 ∂̄
→ · · · → Ap,n → 0

is exact for each p and so the E1 term of the usual spectral sequence of the double complex
⊕

Ap,q
647

is648

E1 = H∂̄ =

0 1 2

Ω0
an Ω1

an Ω2
an

0 0 0

0 0 0

p

q

.
649

Hence, the E2 term is given by650

Ep,q
2 =

{
Hp

d(Ω
•
an) for q = 0,

0 for q > 0.

Since the spectral sequence degenerates at the E2 term,651

Hk
d(Ω

•
an) = E2 = E∞ ≃ Hk

d(A
•
C) =

{
C for k = 0,

0 for k > 0,

which is precisely the holomorphic Poincaré lemma. �652
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2.5.2 The Analytic de Rham Theorem653

THEOREM 2.5.2 Let Ωk
an be the sheaf of holomorphic k-forms on a complex manifold M . Then654

the singular cohomology of M with complex coefficients can be computed as the hypercohomology655

of the complex Ω•
an:656

Hk(M,C) ≃ H
k(M,Ω•

an).

PROOF. Let C• be the complex of sheaves that is C in degree 0 and zero otherwise. The holo-657

morphic Poincaré lemma may be interpreted as a quasi-isomorphism of the two complexes658

0 // C

��

// 0

��

// 0

��

// · · ·

0 // Ω0
an

// Ω1
an

// Ω2
an

// · · ·,

since

H0(C•) = C ≃ Im(C → Ω0
an)

= ker(Ω0
an → Ω1

an) (by the holomorphic Poincaré lemma)

= H0(Ω•
an)

and the higher cohomology sheaves of both complexes are zero.659

By Theorem 2.4.1, the quasi-isomorphism C
• ≃ Ω•

an induces an isomorphism660

H
∗(M,C•) ≃ H

∗(M,Ω•
an) (2.5.1)

in hypercohomology. Since C
• is a complex of sheaves concentrated in degree 0, by (2.4.1) the661

left-hand side of (2.5.1) is the sheaf cohomology Hk(M,C), which is isomorphic to the singular662

cohomology Hk(M,C) by Remark 2.2.16. �663

In contrast to the sheaves Ak and Ap,q in de Rham’s theorem and Dolbeault’s theorem, the664

sheaves Ω•
an are generally neither fine nor acyclic, because in the analytic category there is no par-665

tition of unity. However, when M is a Stein manifold, the complex Ω•
an is a complex of acyclic666

sheaves on M by Cartan’s Theorem B. It then follows from Theorem 2.4.2 that667

H
k(M,Ω•

an) ≃ hk
(
Ω•

an(M)
)
.

This proves the following corollary of Theorem 2.5.2.668

COROLLARY 2.5.3 The singular cohomology of a Stein manifold M with coefficients in C can be669

computed from the holomorphic de Rham complex:670

Hk(M,C) ≃ hk
(
Ω•

an(M)
)
.
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2.6 THE ALGEBRAIC DE RHAM THEOREM FOR A PROJECTIVE VARIETY671

Let X be a smooth complex algebraic variety with the Zariski topology. The underlying set of X672

with the complex topology is a complex manifold Xan. Let Ωk
alg be the sheaf of algebraic k-forms673

on X , and Ωk
an the sheaf of holomorphic k-forms on Xan. According to the holomorphic Poincaré674

lemma (Theorem (2.5.1)), the complex of sheaves675

0 → C → Ω0
an

d
→ Ω1

an

d
→ Ω2

an

d
→ · · · (2.6.1)

is exact. However, there is no Poincaré lemma in the algebraic category; the complex676

0 → C → Ω0
alg → Ω1

alg → Ω2
alg → · · ·

is in general not exact.677

THEOREM 2.6.1 (Algebraic de Rham theorem for a projective variety) If X is a smooth complex678

projective variety, then there is an isomorphism679

Hk(Xan,C) ≃ H
k(X,Ω•

alg)

between the singular cohomology of Xan with coefficients in C and the hypercohomology of X with680

coefficients in the complex Ω•
alg of sheaves of algebraic differential forms on X .681

PROOF. By Theorem 2.4.1, the quasi-isomorphism C
• → Ω•

an of complexes of sheaves induces682

an isomorphism in hypercohomology683

H
∗(Xan,C

•) ≃ H
∗(Xan,Ω

•
an). (2.6.2)

In the second spectral sequence converging to H
∗(Xan,Ω

•
an), by (2.4.4) the E1 term is684

Ep,q
1,an = Hp(Xan,Ω

q
an).

Similarly, in the second spectral sequence converging to the hypercohomology H∗(X,Ω•
alg), by685

(2.4.4) the E1 term is686

Ep,q
1,alg = Hp(X,Ωq

alg).

Since X is a smooth complex projective variety, Serre’s GAGA principle (2.3.1) applies and687

gives an isomorphism688

Hp(X,Ωq
alg) ≃ Hp(Xan,Ω

q
an).

The isomorphism E1,alg
∼
→ E1,an induces an isomorphism in E∞. Hence,689

H
∗(X,Ω•

alg) ≃ H
∗(Xan,Ω

•
an). (2.6.3)

Combining (2.4.1), (2.6.2), and (2.6.3) gives690

H∗(Xan,C) ≃ H
∗(Xan,C

•) ≃ H
∗(Xan,Ω

•
an) ≃ H

∗(X,Ω•
alg).

Finally, by the isomorphism between sheaf cohomology and singular cohomology (Remark 2.2.16),691

we may replace the sheaf cohomology H∗(Xan,C) by singular cohomology:692

H∗(Xan,C) ≃ H
∗(X,Ω•

alg).

�693
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PART II. ČECH COHOMOLOGY AND THE ALGEBRAIC DE RHAM THEOREM IN694

GENERAL695

The algebraic de Rham theorem (Theorem 2.6.1) in fact does not require the hypothesis of projec-696

tivity on X . In this section we will extend it to an arbitrary smooth algebraic variety defined over C.697

In order to carry out this extension, we will need to develop two more machineries: the Čech coho-698

mology of a sheaf and the Čech cohomology of a complex of sheaves. Čech cohomology provides a699

practical method for computing sheaf cohomology and hypercohomology.700

2.7 ČECH COHOMOLOGY OF A SHEAF701

Čech cohomology may be viewed as a generalization of the Mayer–Vietoris sequence from two open702

sets to arbitrarily many open sets.703

2.7.1 Čech Cohomology of an Open Cover704

Let U = {Uα}α∈A be an open cover of the topological space X indexed by a linearly ordered set A,705

and F a presheaf of abelian groups on X . To simplify the notation, we will write the (p + 1)-fold706

intersection Uα0
∩ · · · ∩ Uαp

as Uα0···αp
. Define the group of Čech p-cochains on U with values in707

the presheaf F to be the direct product708

Čp(U,F) :=
∏

α0<···<αp

F(Uα0···αp
).

An element ω of Čp(U,F) is then a function that assigns to each finite set of indices α0, . . . , αp709

an element ωα0...αp
∈ F(Uα0...αp

). We will write ω = (ωα0...αp
), where the subscripts range over710

all α0 < · · · < αp. In particular, the subscripts α0, . . . , αp must all be distinct. Define the Čech711

coboundary operator712

δ = δp : Č
p(U,F) → Čp+1(U,F)

by the alternating sum formula713

(δω)α0...αp+1
=

p+1∑

i=0

(−1)iωα0···α̂i···αp+1
,

where α̂i means to omit the index αi; moreover, the restriction of ωα0···α̂i···αp+1
from Uα0···α̂i···αp+1

714

to Uα0...αp+1
is suppressed in the notation.715

PROPOSITION 2.7.1 If δ is the Čech coboundary operator, then δ2 = 0.716
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PROOF. Basically, this is true because in (δ2ω)α0···αp+2
, we omit two indices αi, αj twice with

opposite signs. To be precise,

(δ2ω)α0···αp+2
=
∑

(−1)i(δω)α0···α̂i···αp+2

=
∑

j<i

(−1)i(−1)jωα0···α̂j ···α̂i···αp+2

+
∑

j>i

(−1)i(−1)j−1ωα0···α̂i···α̂j ···αp+2

= 0.

�717

It follows from Proposition 2.7.1 that Č•(U,F) :=
⊕∞

p=0
Čp(U,F) is a cochain complex with718

differential δ. The cohomology of the complex (Č∗(U,F), δ),719

Ȟp(U,F) :=
ker δp
Im δp−1

=
{p-cocycles}

{p-coboundaries}
,

is called the Čech cohomology of the open cover U with values in the presheaf F .720

2.7.2 Relation Between Čech Cohomology and Sheaf Cohomology721

In this subsection we construct a natural map from the Čech cohomology of a sheaf on an open cover722

to its sheaf cohomology. This map is based on a property of flasque sheaves.723

LEMMA 2.7.2 Suppose F is a flasque sheaf of abelian groups on a topological space X , and724

U = {Uα} is an open cover of X . Then the augmented Čech complex725

0 → F(X) →
∏

α

F(Uα) →
∏

α<β

F(Uαβ) → · · ·

is exact.726

In other words, for a flasque sheaf F on X ,727

Ȟk(U,F) =

{
F(X) for k = 0,

0 for k > 0.

PROOF. [8, Th. 5.2.3(a), p. 207]. �728

Now suppose F is any sheaf of abelian groups on a topological space X and U = {Uα} is an729

open cover of X . Let K•,• =
⊕

Kp,q be the double complex730

Kp,q = Čp(U, CqF) =
∏

α0<···<αp

CqF(Uα0···αp
).
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We augment this complex with an outside bottom row (q = −1) and an outside left column (p =731

−1):732

0 F(X)
∏

F(Uα)
∏

F(Uαβ)

0 C0F(X)
∏

C0F(Uα)
∏

C0F(Uαβ)

0 C1F(X)
∏

C1F(Uα)
∏

C1F(Uαβ)

OO

//
p

q

//

//

//

//

//

//

//

//

//

//

//

//

OO OO OO

ǫ ǫ

OO OO OO

OO OO OO

(2.7.1)

Note that the qth row of the double complex K•,• is the Čech cochain complex of the Gode-733

ment sheaf CqF and the pth column is the complex of groups for computing the sheaf cohomology734 ∏
α0<···<αp

H∗(Uα0···αp
,F).735

By Lemma 2.7.2, each row of the augmented double complex (2.7.1) is exact. Hence, the E1736

term of the second spectral sequence of the double complex is737

E1 = Hδ =

0 1 2

C0F(X) 0 0

C1F(X) 0 0

C2F(X) 0 0

p

q

738

and the E2 term is739

E2 = HdHδ =

0 1 2

H0(X,F) 0 0

H1(X,F) 0 0

H2(X,F) 0 0

p

q

.
740

So the second spectral sequence of the double complex (2.7.1) degenerates at the E2 term and the741

cohomology of the associated single complex K• of
⊕

Kp,q is742

Hk
D(K•) ≃ Hk(X,F).

In the augmented complex (2.7.1), by the construction of Godement’s canonical resolution the743

Čech complex Č•(U,F) injects into the complex K• via a cochain map744

ǫ : Čk(U,F) → Kk,0 →֒ Kk,
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which gives rise to an induced map745

ǫ∗ : Ȟk(U,F) → Hk
D(K•) = Hk(X,F) (2.7.2)

in cohomology.746

DEFINITION 2.7.3 A sheaf F of abelian groups on a topological space X is acyclic on an open747

cover U = {Uα} of X if the cohomology748

Hk(Uα0···αp
,F) = 0

for all k > 0 and all finite intersections Uα0···αp
of open sets in U.749

THEOREM 2.7.4 If a sheaf F of abelian groups is acyclic on an open cover U = {Uα} of a750

topological space X , then the induced map ǫ∗ : Ȟk(U,F) → Hk(X,F) is an isomorphism.751

PROOF. Because F is acyclic on each intersection Uα0···αp
, the cohomology of the pth column752

of (2.7.1) is
∏

H0(Uα0···αp
,F) =

∏
F(Uα0···αp

), so that the E1 term of the usual spectral sequence753

is754

E1 = Hd =

0 1 2

∏
F(Uα0

)
∏

F(Uα0α1
)

∏
F(Uα0α1α2

)

0 0 0

0 0 0

p

q

,

755

and the E2 term is756

E2 = HδHd =

0 1 2

Ȟ0(U,F) Ȟ1(U,F) Ȟ2(U,F)

0 0 0

0 0 0

p

q

.

757

Hence, the spectral sequence degenerates at the E2 term and there is an isomorphism758

ǫ∗ : Ȟk(U,F) ≃ Hk
D(K•) ≃ Hk(X,F).

�759

Remark. Although we used a spectral sequence argument to prove Theorem 2.7.4, in the proof760

there is no problem with the extension of groups in the E∞ term, since along each antidiagonal761 ⊕
p+q=k E

p,q
∞ there is only one nonzero box. For this reason, Theorem 2.7.4 holds for sheaves of762

abelian groups, not just for sheaves of vector spaces.763
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2.8 ČECH COHOMOLOGY OF A COMPLEX OF SHEAVES764

Just as the cohomology of a sheaf can be computed using a Čech complex on an open cover (The-765

orem 2.7.4), the hypercohomology of a complex of sheaves can also be computed using the Čech766

method.767

Let (L•, dL) be a complex of sheaves on a topological space X , and U = {Uα} an open cover768

of X . To define the Čech cohomology of L• on U, let K =
⊕

Kp,q be the double complex769

Kp,q = Čp(U,Lq)

with its two commuting differentials δ and dL. We will call K the Čech–sheaf double complex. The770

Čech cohomology Ȟ∗(U,L•) of L• is defined to be the cohomology of the single complex771

K• =
⊕

Kk, where Kk =
⊕

p+q=k

Čp(U,Lq) and dK = δ + (−1)pdL,

associated to the Čech–sheaf double complex.772

2.8.1 The Relation Between Čech Cohomology and Hypercohomology773

There is an analogue of Theorem 2.7.4 that allows us to compute hypercohomology using an open774

cover.775

THEOREM 2.8.1 If L• is a complex of sheaves of abelian groups on a topological space X such776

that each sheaf Lq is acyclic on the open cover U = {Uα} of X , then there is an isomorphism777

Ȟk(U,L•) ≃ Hk(X,L•) between the Čech cohomology of L• on the open cover U and the hyper-778

cohomology of L• on X .779

The Čech cohomology of the complex L• is the cohomology of the associated single complex780

of the double complex
⊕

p,q Č
p(U,Lq) =

⊕
p,q

∏
α Lq(Uα0···αp

), where α = (α0 < · · · < αp).781

The hypercohomology of the complex L• is the cohomology of the associated single complex of the782

double complex
⊕

q,r C
rLq(X). To compare the two, we form the triple complex with terms783

Np,q,r = Čp(U, CrLq)

and three commuting differentials, the Čech differential δČ , the differential dL of the complex L•,784

and the Godement differential dC .785

Let N•,•,• be any triple complex with three commuting differentials d1, d2, and d3 of degrees786

(1, 0, 0), (0, 1, 0), and (0, 0, 1) respectively. Summing Np,q,r over p and q, or over q and r, one can787

form two double complexes from N•,•,•:788

Nk,r =
⊕

p+q=k

Np,q,r

with differentials789

δ = d1 + (−1)pd2, d = d3,
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and790

N ′p,ℓ =
⊕

q+r=ℓ

Np,q,r

with differentials791

δ′ = d1, d′ = d2 + (−1)qd3.

PROPOSITION 2.8.2 For any triple complex N•,•,•, the two associated double complexes N•,•
792

and N ′•,• have the same associated single complex.793

PROOF. Clearly, the groups794

Nn =
⊕

k+r=n

Nk,r =
⊕

p+q+r=n

Np,q,r

and795

N ′n =
⊕

p+ℓ=n

N ′p,ℓ =
⊕

p+q+r=n

Np,q,r

are equal. The differential D for N• =
⊕

n N
n is796

D = δ + (−1)kd = d1 + (−1)pd2 + (−1)p+qd3.

The differential D′ for N ′• =
⊕

n N
′n is797

D′ = δ′ + (−1)pd′ = d1 + (−1)p
(
d2 + (−1)qd3

)
= D.

�798

Thus, any triple complex N•,•,• has an associated single complex N• whose cohomology can799

be computed in two ways, either from the double complex (N•,•, D) or from the double complex800

(N ′•,•, D′).801

We now apply this observation to the Čech–Godement–sheaf triple complex

N•,•,• =
⊕

Čp(U, CrLq)

of the complex L• of sheaves. The kth column of the double complex N•,• =
⊕

Nk,r is802

⊕
p+q=k

∏
α0<···<αp

Cr+1Lq(Uα0···αp
)

⊕
p+q=k

∏
α0<···<αp

CrLq(Uα0···αp
)

⊕
p+q=k

∏
α0<···<αp

C0Lq(Uα0···αp
),

...

OO

OO

OO
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where the vertical differential d is the Godement differential dC . Since L• is acyclic on the open803

coverU = {Uα}, this column is exact except in the zeroth row, and the zeroth row of the cohomology804

Hd is805 ⊕

p+q=k

∏

α0<···<αp

Lq(Uα0···αp
) =

⊕

p+q=k

Čp(U,Lq) =
⊕

p+q=k

Kp,q = Kk,

the associated single complex of the Čech–sheaf double complex. Thus, the E1 term of the first806

spectral sequence of N•,• is807

E1 = Hd =

0 1 2

K0 K1 K2

0 0 0

0 0 0

k

r

,

808

and so the E2 term is809

E2 = Hδ(Hd) = H∗
dK

(K•) = Ȟ∗(U,L•).

Although we are working with abelian groups, there are no extension issues, because each antidiag-810

onal in E∞ contains only one nonzero group. Thus, the E∞ term is811

H∗
D(N•) ≃ E2 = Ȟ∗(U,L•). (2.8.1)

On the other hand, the ℓth row of N ′•,• is812

0 →
⊕

q+r=ℓ

Č0(U, CrLq) → · · · →
⊕

q+r=ℓ

Čp(U, CrLq) →
⊕

q+r=ℓ

Čp+1(U, CrLq) → · · · ,

which is the Čech cochain complex of the flasque sheaf
⊕

q+r=ℓ C
rLq with differential δ′ = δČ .813

Thus, each row of N ′•,• is exact except in the zeroth column, and the kernel of N ′0,ℓ → N ′1,ℓ is814

M ℓ =
⊕

q+r=ℓ C
rLq(X). Hence, the E1 term of the second spectral sequence is815

E1 = Hδ′ =

0 1 2 3

M0 0 0 0

M1 0 0 0

M2 0 0 0

p

ℓ

.

816

The E2 term is817

E2 = Hd′(Hδ′) = H∗
dM

(M•) = H
∗(X,L•).

Since this spectral sequence for N•,• degenerates at the E2 term and converges to H∗
D′(N ′•), there818

is an isomorphism819

E∞ = H∗
D′(N ′•) ≃ E2 = H

∗(X,L•). (2.8.2)

By Proposition 2.8.2, the two groups in (2.8.1) and (2.8.2) are isomorphic. In this way, one820

obtains an isomorphism between the Čech cohomology and the hypercohomology of the complex821

L•:822

Ȟ∗(U,L•) ≃ H
∗(X,L•).
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2.9 REDUCTION TO THE AFFINE CASE823

Grothendieck proved his general algebraic de Rham theorem by reducing it to the special case of an824

affine variety. This section is an exposition of his ideas in [10].825

THEOREM 2.9.1 (Algebraic de Rham theorem) Let X be a smooth algebraic variety defined over826

the complex numbers, and Xan its underlying complex manifold. Then the singular cohomology of827

Xan with C coefficients can be computed as the hypercohomology of the complex Ω•
alg of sheaves of828

algebraic differential forms on X with its Zariski topology:829

Hk(Xan,C) ≃ H
k(X,Ω•

alg).

By the isomorphism Hk(Xan,C) ≃ Hk(Xan,Ω
•
an) of the analytic de Rham theorem, Grothen-830

dieck’s algebraic de Rham theorem is equivalent to an isomorphism in hypercohomology831

H
k(X,Ω•

alg) ≃ H
k(Xan,Ω

•
an).

The special case of Grothendieck’s theorem for an affine variety is especially interesting, for it does832

not involve hypercohomology.833

COROLLARY 2.9.2 (The affine case) Let X be a smooth affine variety defined over the complex834

numbers and
(
Ω•

alg(X), d
)

the complex of algebraic differential forms on X . Then the singular835

cohomology with C coefficients of its underlying complex manifold Xan can be computed as the836

cohomology of its complex of algebraic differential forms:837

Hk(Xan,C) ≃ hk
(
Ω•

alg(X)
)
.

It is important to note that the left-hand side is the singular cohomology of the complex manifold838

Xan, not of the affine variety X . In fact, in the Zariski topology a constant sheaf on an irreducible839

variety is always flasque (Example 2.2.6), and hence acyclic (Corollary 2.2.5), so that Hk(X,C) = 0840

for all k > 0 if X is irreducible.841

2.9.1 Proof that the General Case Implies the Affine Case842

Assume Theorem 2.9.1. It suffices to prove that for a smooth affine complex variety X , the hyperco-843

homology Hk(X,Ω•
alg) reduces to the cohomology of the complex Ω•

alg(X). Since Ωq
alg is a coherent844

algebraic sheaf, by Serre’s vanishing theorem for an affine variety (Theorem 2.3.11), Ωq
alg is acyclic845

on X . By Theorem 2.4.2,846

H
k(X,Ω•

alg) ≃ hk
(
Ω•

alg(X)
)
.

2.9.2 Proof that the Affine Case Implies the General Case847

Assume Corollary 2.9.2.The proof is based on the facts that every algebraic variety X has an affine848

open cover, an open cover U = {Uα} in which every Uα is an affine open set, and that the inter-849

section of two affine open sets is affine open. The existence of an affine open cover for an algebraic850

variety follows from the elementary fact that every quasiprojective variety has an affine open cover;851

since an algebraic variety by definition has an open cover by quasiprojective varieties, it necessarily852

has an open cover by affine varieties.853
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Since Ω•
alg is a complex of locally free and hence coherent algebraic sheaves, by Serre’s van-854

ishing theorem for an affine variety (Theorem 2.3.11), Ω•
alg is acyclic on an affine open cover. By855

Theorem 2.8.1, there is an isomorphism856

Ȟ∗(U,Ω•
alg) ≃ H

∗(X,Ω•
alg) (2.9.1)

between the Čech cohomology of Ω•
alg on the affine open cover U and the hypercohomology of857

Ω•
alg on X . Similarly, by Cartan’s Theorem B (because a complex affine variety with the complex858

topology is Stein) and Theorem 2.8.1, the corresponding statement in the analytic category is also859

true: if Uan := {(Uα)an}, then860

Ȟ∗(Uan,Ω
•
an) ≃ H

∗(Xan,Ω
•
an). (2.9.2)

The Čech cohomology Ȟ∗(U,Ω•
alg) is the cohomology of the single complex associated to the

double complex
⊕

Kp,q
alg =

⊕
Čp(U,Ωq

alg). The E1 term of the usual spectral sequence of this

double complex is

Ep,q
1,alg = Hp,q

d = hq
d(K

p,•) = hq
d

(
Čp(U,Ω•

alg)
)

= hq
d

( ∏

α0<···<αp

Ω•
alg(Uα0···αp

)
)

=
∏

α0<···<αp

hq
d

(
Ω•

alg(Uα0···αp
)
)

=
∏

α0<···<αp

Hq(Uα0···αp,an,C) (by Corollary 2.9.2).

A completely similar computation applies to the usual spectral sequence of the double complex⊕
Kp,q

an =
⊕

p,q Č
p(Uan,Ω

q
an) converging to the Čech cohomology Ȟ∗(Uan,Ω

•
an): the E1 term of

this spectral sequence is

Ep,q
1,an =

∏

α0<···<αp

hq
d

(
Ω•

an(Uα0···αp,an)
)

=
∏

α0<···<αp

Hq(Uα0···αp,an,C) (by Corollary 2.5.3).

The isomorphism in E1 terms861

E1,alg
∼
→ E1,an

commutes with the Čech differential d1 = δ and induces an isomorphism in E∞ terms862

E∞,alg
∼ // E∞,an

Ȟ∗(U,Ω•
alg) Ȟ∗(Uan,Ω

•
an).

Combined with (2.9.1) and (2.9.2), this gives863

H
∗(X,Ω•

alg) ≃ H
∗(Xan,Ω

•
an),

which, as we have seen, is equivalent to the algebraic de Rham theorem 2.9.1 for a smooth complex864

algebraic variety.865
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2.10 THE ALGEBRAIC DE RHAM THEOREM FOR AN AFFINE VARIETY866

It remains to prove the algebraic de Rham theorem in the form of Corollary 2.9.2 for a smooth affine867

complex variety X . This is the most difficult case and is in fact the heart of the matter. We give a868

proof that is different from Grothendieck’s in [10].869

A normal-crossing divisor on a smooth algebraic variety is a divisor that is locally the zero set870

of an equation of the form z1 · · · zk = 0, where z1, . . . , zN are local parameters. We first describe871

a standard procedure by which any smooth affine variety X may be assumed to be the complement872

of a normal-crossing divisor D in a smooth complex projective variety Y . Let X̄ be the projective873

closure of X ; for example, if X is defined by polynomial equations874

fi(z1, . . . , zN ) = 0

in CN , then X̄ is defined by the equations875

fi

(Z1

Z0

, . . . ,
ZN

Z0

)
= 0

in CPN , where Z0, . . . , ZN are the homogeneous coordinates on CPN and zi = Zi/Z0. In general,876

X̄ will be a singular projective variety. By Hironaka’s resolution of singularities, there is a surjective877

regular map π : Y → X̄ from a smooth projective variety Y to X̄ such that π−1(X̄−X) is a normal-878

crossing divisor D in Y and π|Y −D : Y −D → X is an isomorphism. Thus, we may assume that879

X = Y −D, with an inclusion map j : X →֒ Y .880

Let Ωk
Yan

(∗D) be the sheaf of meromorphic k-forms on Yan that are holomorphic on Xan with881

poles of any order≥ 0 along Dan (order 0 means no poles) and let Ak
Xan

be the sheaf of C∞ complex-882

valued k-forms on Xan. By abuse of notation, we use j also to denote the inclusion Xan →֒ Yan. The883

direct image sheaf j∗A
k
Xan

is by definition the sheaf on Yan defined by884

(
j∗A

k
Xan

)
(V ) = Ak

Xan
(V ∩Xan)

for any open set V ⊂ Yan. Since a section of Ωk
Yan

(∗D) over V is holomorphic on V ∩ Xan and885

therefore smooth there, the sheaf Ωk
Yan

(∗D) of meromorphic forms is a subsheaf of the sheaf j∗A
k
Xan

886

of smooth forms. The main lemma of our proof, due to Hodge and Atiyah [13, Lemma 17, p. 77],887

asserts that the inclusion888

Ω•
Yan

(∗D) →֒ j∗A
•
Xan

(2.10.1)

of complexes of sheaves is a quasi-isomorphism. This lemma makes essential use of the fact that D889

is a normal-crossing divisor. Since the proof of the lemma is quite technical, in order not to interrupt890

the flow of the exposition, we postpone it to the end of the paper.891

By Theorem 2.4.1, the quasi-isomorphism (2.10.1) induces an isomorphism892

H
k
(
Yan,Ω

•
Yan

(∗D)
)
≃ H

k(Yan, j∗A
•
Xan

) (2.10.2)

in hypercohomology. If we can show that the right-hand side is Hk(Xan,C) and the left-hand893

side is hk
(
Ω•

alg(X)
)
, the algebraic de Rham theorem for the affine variety X (Corollary 2.9.2),894

hk
(
Ω•

alg(X)
)
≃ Hk(Xan,C), will follow.895
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2.10.1 The Hypercohomology of the Direct Image of a Sheaf of Smooth Forms896

To deal with the right-hand side of (2.10.2), we prove a more general lemma valid on any complex897

manifold.898

LEMMA 2.10.1 Let M be a complex manifold and U an open submanifold, with j : U →֒ M899

the inclusion map. Denote the sheaf of smooth C-valued k-forms on U by Ak
U . Then there is an900

isomorphism901

H
k(M, j∗A

•
U ) ≃ Hk(U,C).

PROOF. Let A0 be the sheaf of smooth C-valued functions on the complex manifold M . For

any open set V ⊂ M , there is an A0(V )-module structure on (j∗A
k
U )(V ) = Ak

U (U ∩ V ):

A0(V )×Ak
U (U ∩ V ) → Ak

U (U ∩ V ),

(f, ω) 7→ f · ω.

Hence, j∗A
k
U is a sheaf of A0-modules on M . As such, j∗A

k
U is a fine sheaf on M (Subsec-902

tion 2.2.5).903

Since fine sheaves are acyclic, by Theorem 2.4.2,

H
k(M, j∗A

•
U ) ≃ hk

(
(j∗A

•
U )(M)

)

= hk
(
A•

U (U)
)

(definition of j∗A
•
U )

= Hk(U,C) (by the smooth de Rham theorem).

�904

Applying the lemma to M = Yan and U = Xan, we obtain905

H
k(Yan, j∗A

•
Xan

) ≃ Hk(Xan,C).

This takes care of the right-hand side of (2.10.2).906

2.10.2 The Hypercohomology of Rational and Meromorphic Forms907

Throughout this subsection, the smooth complex affine variety X is the complement of a normal-908

crossing divisor D in a smooth complex projective variety Y . Let Ωq
Yan

(nD) be the sheaf of mero-909

morphic q-forms on Yan that are holomorphic on Xan with poles of order ≤ n along Dan. As before,910

Ωq
Yan

(∗D) is the the sheaf of meromorphic q-forms on Yan that are holomorphic on Xan with at most911

poles (of any order) along D. Similarly, Ωq
Y (∗D) and Ωq

Y (nD) are their algebraic counterparts, the912

sheaves of rational q-forms on Y that are regular on X with poles along D of arbitrary order or order913

≤ n respectively. Then914

Ωq
Yan

(∗D) = lim
−→
n

Ωq
Yan

(nD) and Ωq
Y (∗D) = lim

−→
n

Ωq
Y (nD).

Let Ωq
X and Ωq

Y be the sheaves of regular q-forms on X and Y respectively; they are what would915

be written Ωq
alg if there is only one variety. Similarly, let Ωq

an and Ωq
an be sheaves of holomorphic916
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q-forms on Xan and Yan respectively. There is another description of the sheaf Ωq
Y (∗D) that will917

prove useful. Since a regular form on X = Y −D that is not defined on D can have at most poles918

along D (no essential singularities), if j : X → Y is the inclusion map, then919

j∗Ω
q
X = Ωq

Y (∗D).

Note that the corresponding statement in the analytic category is not true: if j : Xan → Yan now920

denotes the inclusion of the corresponding analytic manifolds, then in general921

j∗Ω
q
Xan

6= Ωq
Yan

(∗D)

because a holomorphic form on Xan that is not defined along Dan may have an essential singularity922

on Dan.923

Our goal now is to prove that the hypercohomologyH∗
(
Yan,Ω

•
Yan

(∗D)
)

of the complexΩ•
Yan

(∗D)924

of sheaves of meromorphic forms on Yan is computable from the algebraic de Rham complex on X :925

H
k
(
Yan,Ω

•
Yan

(∗D)
)
≃ hk

(
Γ(X,Ω•

alg)
)
.

This will be accomplished through a series of isomorphisms.926

First, we prove something akin to a GAGA principle for hypercohomology. The proof requires927

commuting direct limits and cohomology, for which we shall invoke the following criterion. A928

topological space is said to be noetherian if it satisfies the descending chain condition for closed929

sets: any descending chain Y1 ⊃ Y2 ⊃ · · · of closed sets must terminate after finitely many steps.930

As shown in a first course in algebraic geometry, affine and projective varieties are noetherian [12,931

Example 1.4.7, p. 5; Exercise 1.7(b), p. 8, Exercise 2.5(a), p. 11].932

PROPOSITION 2.10.2 (Commutativity of direct limit with cohomology) Let (Fα) be a direct sys-933

tem of sheaves on a topological space Z . The natural map934

lim
−→

Hk(Z,Fα) → Hk(Z, lim
−→

Fα)

is an isomorphism if935

(i) Z is compact, or936

(ii) Z is noetherian.937

PROOF. For (i), see [13, Lemma 4, p. 61]. For (ii), see [12, Ch. III, Prop. 2.9, p. 209] or [8,938

Ch. II, Remark after Th. 4.12.1, p. 194]. �939

PROPOSITION 2.10.3 In the notation above, there is an isomorphism in hypercohomology940

H
∗
(
Y,Ω•

Y (∗D)
)
≃ H

∗
(
Yan,Ω

•
Yan

(∗D)
)
.

PROOF. Since Y is a projective variety and each Ω•
Y (nD) is locally free, we can apply Serre’s941

GAGA principle (2.3.1) to get an isomorphism942

Hp
(
Y,Ωq

Y (nD)
)
≃ Hp

(
Yan,Ω

q
Yan

(nD)
)
.
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Next, take the direct limit of both sides as n → ∞. Since the projective variety Y is noetherian and943

the complex manifold Yan is compact, by Proposition 2.10.2, we obtain944

Hp
(
Y, lim

−→
n

Ωq
Y (nD)

)
≃ Hp

(
Yan, lim−→

n

Ωq
Yan

(nD)
)
,

which is945

Hp
(
Y,Ωq

Y (∗D)
)
≃ Hp

(
Yan,Ω

q
Yan

(∗D)
)
.

Now the two cohomology groups Hp
(
Y,Ωq

Y (∗D)
)

and Hp
(
Yan,Ω

q
Yan

(∗D)
)

are the E1 terms of946

the second spectral sequences of the hypercohomologies of Ω•
Y (∗D) and Ω•

Yan
(∗D) respectively (see947

(2.4.4)). An isomorphism of the E1 terms induces an isomorphism of the E∞ terms. Hence,948

H
∗
(
Y,Ω•

Y (∗D)
)
≃ H

∗
(
Yan,Ω

•
Yan

(∗D)
)
.

�949

PROPOSITION 2.10.4 In the notation above, there is an isomorphism950

H
k
(
Y,Ω•

Y (∗D)
)
≃ H

k(X,Ω•
X)

for all k ≥ 0.951

PROOF. If V is an affine open set in Y , then V is noetherian and so by Proposition 2.10.2(ii),

for p > 0,

Hp
(
V,Ωq

Y (∗D)
)
= Hp

(
V, lim

−→
n

Ωq
Y (nD)

)

≃ lim
−→
n

Hp
(
V,Ωq

Y (nD)
)

= 0,

the last equality following from Serre’s vanishing theorem (Theorem 2.3.11), since V is affine and952

Ωq
Y (nD) is locally free and therefore coherent. Thus, the complex of sheaves Ω•

Y (∗D) is acyclic on953

any affine open cover U = {Uα} of Y . By Theorem 2.8.1, its hypercohomology can be computed954

from its Čech cohomology:955

H
k
(
Y,Ω•

Y (∗D)
)
≃ Ȟk

(
U,Ω•

Y (∗D)
)
.

Recall that if j : X → Y is the inclusion map, then Ω•
Y (∗D) = j∗Ω

•
X . By definition, the Čech

cohomology Ȟk
(
U,Ω•

Y (∗D)
)

is the cohomology of the associated single complex of the double

complex

Kp,q = Čp
(
U,Ωq

Y (∗D)
)
= Čp(U, j∗Ω

q
X)

=
∏

α0<···<αp

Ωq(Uα0···αp
∩X). (2.10.3)
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Next we compute the hypercohomology Hk(X,Ω•
X). The restriction U|X := {Uα ∩ X} of U956

to X is an affine open cover of X . Since Ωq
X is locally free [17, Ch. III, Th. 2, p. 200], by Serre’s957

vanishing theorem for an affine variety again,958

Hp(Uα ∩X,Ωq
X) = 0 for all p > 0.

Thus, the complex of sheaves Ω•
X is acyclic on the open cover U|X of X . By Theorem 2.8.1,959

H
k(X,Ω•

X) ≃ Ȟk(U|X ,Ω•
X).

The Čech cohomology Ȟk(U|X ,Ω•
X) is the cohomology of the single complex associated to the

double complex

Kp,q = Čp(U|X ,Ωq
X)

=
∏

α0<···<αp

Ωq(Uα0···αp
∩X). (2.10.4)

Comparing (2.10.3) and (2.10.4), we get an isomorphism960

H
k
(
Y,Ω•

Y (∗D)
)
≃ H

k(X,Ω•
X)

for every k ≥ 0. �961

Finally, because Ωq
X is locally free, by Serre’s vanishing theorem for an affine variety still again,962

Hp(X,Ωq
X) = 0 for all p > 0. Thus, Ω•

X is a complex of acyclic sheaves on X . By Theorem 2.4.2,963

the hypercohomologyHk(X,Ω•
X) can be computed from the complex of global sections of Ω•

X :964

H
k(X,Ω•

X) ≃ hk
(
Γ(X,Ω•

X)
)
= hk

(
Ω•

alg(X)
)
. (2.10.5)

Putting together Propositions 2.10.3 and 2.10.4 with (2.10.5), we get the desired interpretation965

H
k
(
Yan,Ω

•
Yan

(∗D)
)
≃ hk

(
Ω•

alg(X)
)

of the left-hand side of (2.10.2). Together with the interpretation of the right-hand side of (2.10.2)966

as Hk(Xan,C), this gives Grothendieck’s algebraic de Rham theorem for an affine variety,967

Hk(Xan,C) ≃ hk
(
Ω•

alg(X)
)
.

2.10.3 Comparison of Meromorphic and Smooth Forms968

It remains to prove that (2.10.1) is a quasi-isomorphism. We will reformulate the lemma in slightly969

more general terms. Let M be a complex manifold of complex dimension n, let D be a normal-970

crossing divisor in M , and let U = M − D be the complement of D in M , with j : U →֒ M the971

inclusion map. Denote by Ωq
M (∗D) the sheaf of meromorphic q-forms on M that are holomorphic972

on U with at most poles along D, and by Aq
U := Aq

U ( ,C) the sheaf of smooth C-valued q-forms on973

U . For each q, the sheaf Ωq
M (∗D) is a subsheaf of j∗A

q
U .974

LEMMA 2.10.5 (Fundamental lemma of Hodge and Atiyah [13, Lemma 17, p. 77]) The inclusion975

Ω•
M (∗D) →֒ j∗A

•
U of complexes of sheaves is a quasi-isomorphism.976
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PROOF. We remark first that this is a local statement. Indeed, the main advantage of using sheaf977

theory is to reduce the global statement of the algebraic de Rham theorem for an affine variety to978

a local result. The inclusion Ω•
M (∗D) →֒ j∗A

•
U of complexes induces a morphism of cohomology979

sheaves H∗
(
Ω•

M (∗D)
)
→ H∗(j∗A

•
U ). It is a general fact in sheaf theory that a morphism of sheaves980

is an isomorphism if and only if its stalk maps are all isomorphisms [12, Prop. 1.1, p. 63], so we981

will first examine the stalks of the sheaves in question. There are two cases: p ∈ U and p ∈ D. For982

simplicity, let Ωq
p := (Ωq

M )p be the stalk of Ωq
M at p ∈ M and let Aq

p := (Aq
U )p be the stalk of Aq

U983

at p ∈ U .984

Case 1: At a point p ∈ U , the stalk of Ωq
M (∗D) is Ωq

p, and the stalk of j∗A
q
U is Aq

p. Hence, the985

stalk maps of the inclusion Ω•
M (∗D) →֒ j∗A

•
U at p are986

0 // Ω0
p

//

��

Ω1
p

//

��

Ω2
p

//

��

· · ·

0 // A0
p

// A1
p

// A2
p

// · · · .

(2.10.6)

Being a chain map, (2.10.6) induces a homomorphism in cohomology. By the holomorphic Poincaré987

lemma (Theorem 2.5.1), the cohomology of the top row of (2.10.6) is988

hk(Ω•
p) =

{
C for k = 0,

0 for k > 0.

By the complex analogue of the smooth Poincaré lemma ([3, §4, p. 33] and [9, p. 38]), the cohomol-989

ogy of the bottom row of (2.10.6) is990

hk(A•
p) =

{
C for k = 0,

0 for k > 0.

Since the inclusion map (2.10.6) takes 1 ∈ Ω0
p to 1 ∈ A0

p, it is a quasi-isomorphism.991

By Proposition 2.2.9, for p ∈ U ,992

Hk
(
Ω•

M (∗D)
)
p
≃ hk

(
(Ω•

M (∗D))p
)
= hk(Ω•

p)

and993

Hk(j∗A
•
U )p ≃ hk

(
(j∗A

•
U )p
)
= hk(A•

p).

Therefore, by the preceding paragraph, at p ∈ U the inclusion Ω•
M (∗D) →֒ j∗A

•
U induces an994

isomorphism of stalks995

Hk
(
Ω•

M (∗D)
)
p
≃ Hk(j∗A

•
U )p (2.10.7)

for all k > 0.996

Case 2: Similarly, we want to show that (2.10.7) holds for p /∈ U , i.e., for p ∈ D. Note that to997

show the stalks of these sheaves at p are isomorphic, it is enough to show the spaces of sections are998

isomorphic over a neighborhood basis of polydisks.999

Choose local coordinates z1, . . . , zn so that p = (0, . . . , 0) is the origin and D is the zero set

of z1 · · · zk = 0 on some coordinate neighborhood of p. Let P be the polydisk P = ∆n :=
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∆× · · · ×∆ (n times), where ∆ is a small disk centered at the origin in C, say of radius ǫ for some

ǫ > 0. Then P ∩ U is the polycylinder

P ∗ := P ∩ U = ∆n ∩ (M −D)

= {(z1, . . . , zn) ∈ ∆n | zi 6= 0 for i = 1, . . . , k}

= (∆∗)k ×∆n−k,

where ∆∗ is the punctured disk ∆ − {0} in C. Note that P ∗ has the homotopy type of the torus1000

(S1)k . For 1 ≤ i ≤ k, let γi be a circle wrapping once around the ith ∆∗. Then a basis for the1001

homology of P ∗ is given by the submanifolds
∏

i∈J γi for all the various subsets J ⊂ [1, k].1002

Since on the polydisk P ,1003

(j∗A
•
U )(P ) = A•

U (P ∩ U) = A•(P ∗),

the cohomology of the complex (j∗A
•
U )(P ) is

h∗
(
(j∗A

•
U )(P )

)
= h∗

(
A•(P ∗)

)

= H∗(P ∗,C) ≃ H∗
(
(S1)k,C

)

=
∧([

dz1
z1

]
, . . . ,

[
dzk
zk

])
, (2.10.8)

the free exterior algebra on the k generators [dz1/z1], . . . , [dzk/zk]. Up to a constant factor of 2πi,1004

this basis is dual to the homology basis cited above, as we can see by integrating over products of1005

loops.1006

For each q, the inclusion Ωq
M (∗D) →֒ j∗A

q
U of sheaves induces an inclusion of groups of1007

sections over a polydisk P :1008

Γ
(
P,Ωq

M (∗D)
)
→֒ Γ(P, j∗A

q
U ).

As q varies, the inclusion of complexes1009

i : Γ
(
P,Ω•

M (∗D)
)
→ Γ(P, j∗A

•
U )

induces a homomorphism in cohomology1010

i∗ : h∗
(
Γ(P,Ω•

M (∗D))
)
→ h∗

(
Γ(P, j∗A

•
U )
)
=
∧([

dz1
z1

]
, . . . ,

[
dzk
zk

])
. (2.10.9)

Since each dzj/zj is a closed meromorphic form on P with poles along D, it defines a cohomology1011

class in h∗
(
Γ(P,Ω•

M (∗D))
)
. Therefore, the map i∗ is surjective. If we could show i∗ were an1012

isomorphism, then by taking the direct limit over all polydisks P containing p, we would obtain1013

H∗
(
Ω•

M (∗D)
)
p
≃ H∗(j∗A

•
U )p for p ∈ D, (2.10.10)

which would complete the proof of the fundamental lemma (Lemma 2.10.5).1014

We now compute the cohomology of the complex Γ
(
P,Ω•

M (∗D)
)
.1015
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PROPOSITION 2.10.6 Let P be a polydisk ∆n in Cn, and D the normal-crossing divisor defined1016

in P by z1 · · · zk = 0. The cohomology ring h∗
(
Γ(P,Ω•(∗D))

)
is generated by [dz1/z1], . . . ,1017

[dzk/zk].1018

PROOF. The proof is by induction on the number k of irreducible components of the singular1019

set D. When k = 0, the divisor D is empty and meromorphic forms on P with poles along D are1020

holomorphic. By the holomorphic Poincaré lemma,1021

h∗
(
Γ(P,Ω•)

)
= H∗(P,C) = C.

This proves the base case of the induction.1022

The induction step is based on the following lemma.1023

LEMMA 2.10.7 Let P be a polydisk ∆n, and D the normal-crossing divisor defined by z1 · · · zk =1024

0 in P . Let ϕ ∈ Γ
(
P,Ωq(∗D)

)
be a closed meromorphic q-form on P that is holomorphic on P ∗ :=1025

P −D with at most poles along D. Then there exist closed meromorphic forms ϕ0 ∈ Γ
(
P,Ωq(∗D)

)
1026

and α1 ∈ Γ
(
P,Ωq−1(∗D)

)
, which have no poles along z1 = 0, such that their cohomology classes1027

satisfy the relation1028

[ϕ] = [ϕ0] +

[
dz1
z1

]
∧ [α1].

PROOF. Our proof is an elaboration of the proof of Hodge–Atiyah [13, Lemma 17, p. 77]. We1029

can write ϕ in the form1030

ϕ = dz1 ∧ α+ β,

where the meromorphic (q − 1)-form α and the q-form β do not involve dz1. Next, we expand α
and β as Laurent series in z1:

α = α0 + α1z
−1

1 + α2z
−2

1 + · · ·+ αrz
−r
1 ,

β = β0 + β1z
−1

1 + β2z
−2

1 + · · ·+ βrz
−r
1 ,

where αi and βi for 1 ≤ i ≤ r do not involve z1 or dz1 and are meromorphic in the other variables,1031

and α0, β0 are holomorphic in z1, are meromorphic in the other variables, and do not involve dz1.1032

Then1033

ϕ = (dz1 ∧ α0 + β0) +

(
dz1 ∧

r∑

i=1

αiz
−i
1 +

r∑

i=1

βiz
−i
1

)
.

Set ϕ0 = dz1 ∧α0 + β0. By comparing the coefficients of z−i
1 dz1 and z−i

1 , we deduce from the1034

condition dϕ = 01035

dα1 = dα2 + β1 = dα3 + 2β2 = · · · = rβr = 0,

dβ1 = dβ2 = dβ3 = · · · = dβr = 0,

and dϕ0 = 0.1036

We can write1037

ϕ = ϕ0 +
dz1
z1

∧ α1 +

(
dz1 ∧

r∑

i=2

αiz
−i
1 +

r∑

i=1

βiz
−i
1

)
. (2.10.11)
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It turns out that the term within the parentheses in (2.10.11) is dθ for1038

θ = −
α2

z1
−

α3

2z21
− · · · −

αr

(r − 1)zr−1

1

.

In (2.10.11), both ϕ0 and α1 are closed. Hence, the cohomology classes satisfy the relation1039

[ϕ] = [ϕ0] +

[
dz1
z1

]
∧ [α1].

�1040

Since ϕ0 and α1 are meromorphic forms which do not have poles along z1 = 0, their singu-1041

larity set is contained in the normal-crossing divisor defined by z2 · · · zk = 0, which has k − 11042

irreducible components. By induction, the cohomology classes of ϕ0 and α1 are generated by1043

[dz2/z2], . . . , [dzk/zk]. Hence, [ϕ] is a graded-commutative polynomial in [dz1/z1], . . . , [dzk/zk].1044

This completes the proof of Proposition 2.10.6. �1045

PROPOSITION 2.10.8 Let P be a polydisk ∆n in C
n, and D the normal-crossing divisor defined1046

by z1 · · · zk = 0 in P . Then there is a ring isomorphism1047

h∗
(
Γ(P,Ω•(∗D))

)
≃
∧([

dz1
z1

]
, . . . ,

[
dzk
zk

])
.

PROOF. By Proposition 2.10.6, h∗
(
Γ(P,Ω•(∗D))

)
is generated as a graded-commutative al-1048

gebra by [dz1/z1], . . . , [dzk/zk]. It remains to show that these generators satisfy no algebraic re-1049

lations other than those implied by graded commutativity. Let ωi = dzi/zi and ωI := ωi1···ir :=1050

ωi1 ∧· · ·∧ωir . Any linear relation among the cohomology classes [ωI ] in h∗
(
Γ(P,Ω•(∗D))

)
would1051

be, on the level of forms, of the form1052 ∑
cIωI = dξ (2.10.12)

for some meromorphic form ξ with at most poles along D. But by restriction to P −D, this would1053

give automatically a relation in Γ(P, j∗A
q
U ). Since h∗

(
Γ(P, j∗A

q
U )
)
=
∧
([ω1], . . . , [ωk]) is freely1054

generated by [ω1], . . . , [ωk] (see (2.10.8)), the only possible relations (2.10.12) are all implied by1055

graded commutativity. �1056

Since the inclusion Ω•
M (∗D) →֒ j∗A

∗
U induces an isomorphism1057

H∗
(
Ω•

M (∗D)
)
p
≃ H∗(j∗A

•
U )p

of stalks of cohomology sheaves for all p, the inclusion Ω•
M (∗D) →֒ j∗A

∗
U is a quasi-isomorphism.1058

This completes the proof of Lemma 2.10.5. �1059
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acyclic resolution, 251099

acyclic sheaf1100

on an open cover, 331101

on an open set, 121102

algebraic de Rham theorem, 1, 371103

for a projective variety, 291104

the affine case, 371105

algebraic differential form, 11106

algebraic sheaf, 191107

algebraic variety, 11108

analytic de Rham theorem, 281109

analytic sheaf, 181110

associated sheaf, 31111

Cartan’s Theorem B, 201112

Čech coboundary operator, 301113

Čech cochains, 301114

Čech cohomology, 311115

isomorphism with sheaf cohomol-1116

ogy, 181117

Čech-sheaf double complex, 341118

coherent sheaf, 191119

cohomology1120

in degree 0, 91121

of a complex, 91122

of a constant sheaf with Zariski1123

topology, 121124

of a flasque sheaf, 111125

with coefficients in a sheaf, 91126

cohomology sheaves1127

of a complex of sheaves, 131128

stalk, 131129

commutativity1130

of direct limit with cohomology,1131

411132

comparison1133

of Čech cohomology and hyper-1134

cohomology, 341135

of Čech cohomology and sheaf1136

cohomology, 331137

of meromorphic and smooth1138

forms, 431139

complex of sheaves, 131140

cohomology sheaves of, 131141

constant sheaf1142

cohomology of, 121143

de Rham cohomology, 51144

de Rham complex, 51145

de Rham theorem, 1, 6, 261146

algebraic, 11147

analytic, 281148

direct image1149

sheaf, 391150

direct sum1151

of sheaves, 181152

discontinuous sections, 61153

Dolbeault cohomology, 51154

Dolbeault complex, 51155

Dolbeault theorem, 261156

étalé space, 31157

exact functor, 41158

commutes with cohomology, 141159

exact sequence1160

of sheaves, 41161

fine sheaf, 151162

is acyclic on every open subset, 181163

finite presentation1164

of a sheaf of modules, 191165

first spectral sequence1166
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E2 term, 231167

flasque sheaves, 101168

are acyclic, 121169

cohomology of, 111170

functor1171

exact, 41172

functoriality of Godement resolution, 61173

fundamental lemma1174

of Hodge and Atiyah, 431175

GAGA principle, 211176

generators1177

of a sheaf, 191178

Godement canonical resolutions, 61179

Godement functors, 71180

are exact functors, 71181

Godement resolution1182

is functorial, 61183

Godement sections functor, 121184

is an exact functor, 121185

Godement sheaves, 61186

are flasque, 101187

Grothendieck’s algebraic de Rham the-1188

orem, 11189

holomorphic Poincaré lemma, 271190

hypercohomology, 221191

of a complex of acyclic sheaves,1192

241193

of the direct image of a sheaf of1194

smooth forms, 401195

spectral sequence of, 221196

left-exact functor, 41197

locally finite open cover, 161198

locally finitely presented sheaf, 191199

locally free sheaf, 181200

morphism1201

of complexes of sheaves, 131202

quasi-isomorphism, 131203

of sheaves of modules, 161204

noetherian topological space, 411205

normal-crossing divisor, 391206

Oka’s theorem, 191207

paracompact topological space, 161208

partition of unity1209

of a sheaf, 151210

Poincaré lemma, 261211

holomorphic, 271212

polycylinder, 451213

polydisk, 441214

presheaf of constant functions, 41215

sheafification, 41216

quasi-isomorphism, 131217

induces an isomorphism in coho-1218

mology, 231219

R-module, 151220

rank1221

of a locally free sheaf, 181222

regular function, 11223

resolution, 51224

acyclic, 251225

restriction1226

of a sheaf to an open subset, 181227

second spectral sequence1228

E2 term, 231229

section1230

of an étalé space, 31231

Serre’s theorem1232

on the coherence of the sheaf of1233

regular functions, 191234

on the cohomology of an affine1235

variety, 211236

sheaf cohomology, 91237

isomorphism with Čech cohomol-1238

ogy, 181239

using acyclic resolution, 251240

sheaf morphism1241

support of, 151242

sheaf of modules1243

finitely presented, 191244

locally finitely presented, 191245

of finite type, 191246

over a sheaf of commutative rings,1247

151248
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sheaf of relations, 191249

sheafification, 31250

short exact sequence1251

of sheaves, 41252

singular cohomology1253

of a Stein manifold, 281254

spectral sequence1255

first, 221256

of hypercohomology, 221257

second, 221258

usual, 221259

stalk1260

of a cohomology sheaf, 131261

Stein manifold, 201262

support1263

of a sheaf morphism, 151264

topological manifolds1265

are paracompact, 161266

triple complex, 341267

usual spectral sequence, see first spec-1268

tral sequence 221269


