

Available online at www.sciencedirect.com

Topology and its Applications

Topology and its Applications 154 (2007) 1493-1501

www.elsevier.com/locate/topol

On the localization formula in equivariant cohomology

Andrés Pedroza^{a,*,1}, Loring W. Tu^{b,2}

^a Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Col., Mexico 28045
 ^b Department of Mathematics, Tufts University, Medford, MA 02155, USA

Received 30 May 2005; received in revised form 31 October 2005; accepted 31 October 2005

Abstract

We give a generalization of the Atiyah–Bott–Berline–Vergne localization theorem for the equivariant cohomology of a torus action. We replace the manifold having a torus action by an equivariant map of manifolds having a compact connected Lie group action. This provides a systematic method for calculating the Gysin homomorphism in ordinary cohomology of an equivariant map. As an example, we recover a formula of Akyildiz–Carrell for the Gysin homomorphism of flag manifolds. © 2006 Elsevier B.V. All rights reserved.

MSC: primary 55N25, 57S15; secondary 14M15

Keywords: Atiyah-Bott-Berline-Vergne localization formula; Push-forward; Gysin map; Equivariant cohomology

Suppose *M* is a compact oriented manifold on which a torus *T* acts. The Atiyah–Bott–Berline–Vergne localization formula calculates the integral of an equivariant cohomology class on *M* in terms of an integral over the fixed point set M^T . This formula has found many applications, for example, in analysis, topology, symplectic geometry, and algebraic geometry (see [2,6,8,12]). Similar, but not entirely analogous, formulas exist in *K*-theory [3], cobordism theory [11], and algebraic geometry [7].

Taking cues from the work of Atiyah and Segal in *K*-theory [3], we state and prove a localization formula for a compact connected Lie group action in terms of the fixed point set of a conjugacy class in the group. As an application, the formula can be used to calculate the Gysin homomorphism in ordinary cohomology of an equivariant map. For a compact connected Lie group *G* with maximal torus *T* and a closed subgroup *H* containing *T*, we work out as an example the Gysin homomorphism of the canonical projection $f: G/T \to G/H$, a formula first obtained by Akyildiz and Carrell [1].

The application to the Gysin map in this article complements that of [12]. The previous article [12] shows how to use the ABBV localization formula to calculate the Gysin map of a fiber bundle. This article shows how to use the relative localization formula to calculate the Gysin map of an equivariant map.

* Corresponding author.

E-mail addresses: andres_pedroza@ucol.mx (A. Pedroza), loring.tu@tufts.edu (L.W. Tu).

¹ The author was supported in part by FRABA-Universidad de Colima Grant.

² The author acknowledges the hospitality and support of the Institut Henri Poincaré and the Institut de Mathématiques de Jussieu, Paris.

^{0166-8641/}\$ – see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2005.10.013

1. Borel-type localization formula for a conjugacy class

Suppose a compact connected Lie group G acts on a manifold M. For $g \in G$, define M^g to be the fixed point set of g:

$$M^g = \{ x \in M \mid g \cdot x = x \}.$$

The set M^g is not G-invariant. The G-invariant subset it generates is

$$\bigcup_{h \in G} h \cdot (M^g) = \bigcup_{h \in G} M^{hgh^{-1}} = \bigcup_{k \in C(g)} M^k$$

where C(g) is the conjugacy class of g. This suggests that for every conjugacy class C in G, we consider the set M^C of elements of M that are fixed by at least one element of the conjugacy class C:

$$M^C = \bigcup_{k \in C} M^k.$$

Then M^C is a closed G-subset of M [3, footnote 1, p. 532]; however it may not be always smooth. From now on we make the assumption that M^C is smooth.

Suppose C = C(g) is the conjugacy class of an element g in G. Let T be a maximal torus of T containing g. Then we have the following inclusions of fixed-point sets:

$$M^G \subset M^T \subset M^g \subset M^C. \tag{1}$$

Remark 1.1. If T is a maximal torus in the compact connected Lie group G and dim $T = \ell$, then

$$H^*(BG) = H^*(BT)^{W_G} = \mathbb{Q}[u_1, \dots, u_\ell]^{W_G},$$

where W_G is the Weyl group of T in G. Thus, $H^*(BG)$ is an integral domain. Let Q be its field of fractions. For any $H^*(BG)$ -module V, we define the localization of V with respect to the zero ideal in $H^*(BG)$ to be

$$\tilde{V} := V \otimes_{H^*(BG)} Q.$$

It is easily verified that V is $H^*(BG)$ -torsion if and only if $\hat{V} = 0$. For a G-manifold M, we call $\hat{H}^*_G(M)$ the *localized* equivariant cohomology of M.

Lemma 1.2. Let M be a G-manifold and T a maximal torus of G. If $H_T^*(M)$ is $H^*(BT)$ -torsion, then $H_G^*(M)$ is $H^*(BG)$ -torsion.

Proof. Recall that $H^*_G(M)$ is the subring of $H^*_T(M)$ consisting of the W_G -invariant elements. Let $\psi: H^*_G(M) \to H^*_T(M)$ be the inclusion ring homomorphism. Since $H^*_T(M)$ is $H^*(BT)$ -torsion, there is $a \in H^*(BT)$ such that $a \cdot 1_{H^*_T(M)} = 0$. Consider the average of a over the Weyl group W_G of T in G,

$$\tilde{a} = \frac{1}{|W_G|}(a + \omega_1 a + \dots + \omega_r a) \in H^*(BG).$$

Under ψ , the element $\tilde{a} \cdot 1_{H^*_G(M)}$ goes to

$$\frac{1}{|W_G|}(\omega_1 a + \dots + \omega_r a) \mathbf{1}_{H^*_T(M)}$$

But $(\omega_j a) \mathbf{1}_{H^*_T(M)} = \omega_j (a \mathbf{1}_{H^*_T(M)}) = 0$ for any j. Thus $\tilde{a} \cdot \mathbf{1}_{H^*_G(M)} = 0$ in $H^*_G(M)$. \Box

Proposition 1.3. Let G be a compact connected Lie group acting on a compact manifold M, and let C be a conjugacy class in G. If $U \subset M - M^C$ is an open G-subset, then the equivariant cohomology $H^*_G(U)$ is $H^*(BG)$ -torsion.

Proof. It follows from (1) that $U \subset M - M^C \subset M - M^T$. Since the inclusion map $U \to M - M^T$ is *T*-equivariant, and $H_T^*(M - M^T)$ is $H^*(BT)$ -torsion by [9, Theorem 11.4.1], $H_T^*(U)$ is also $H^*(BT)$ -torsion. By Lemma 1.2, $H_G^*(U)$ is $H^*(BG)$ -torsion. \Box

In the rest of this section, "torsion" will mean $H^*(BG)$ -torsion.

Theorem 1.4 (Borel-type localization formula for a conjugacy class). Let G be a compact connected Lie group acting on a compact manifold M, and C a conjugacy class in G. Then the inclusion $i: M^C \to M$ induces an isomorphism in localized equivariant cohomology

$$i^*: \hat{H}^*_G(M) \to \hat{H}^*_G(M^C)$$

Proof. Let U be a G-invariant tubular neighborhood of M^C . Then $\{U, M - M^C\}$ is a G-invariant open cover of M. Moreover, $H^*_G(U) \simeq H^*_G(M^C)$ because U has the G-homotopy type of M^C .

By Proposition 1.3, $H_G^*(M - M^C)$ and $H_G^*(U \cap (M - M^C))$ are torsion. Then in the localized equivariant Mayer– Vietoris sequence

$$\cdots \to \hat{H}_{G}^{*-1} \left(U \cap \left(M - M^{C} \right) \right) \to \hat{H}_{G}^{*}(M) \to \hat{H}_{G}^{*} \left(M - M^{C} \right) \oplus \hat{H}_{G}^{*}(U) \to \hat{H}_{G}^{*} \left(U \cap \left(M - M^{C} \right) \right) \to \cdots,$$

all the terms except $\hat{H}^*_G(M)$ and $\hat{H}^*_G(U)$ are zero. It follows that

$$\hat{H}^*_G(M) \to \hat{H}^*_G(U) \simeq \hat{H}^*_G(M^C)$$

is an isomorphism of $H^*(BG)$ -modules. \Box

When the group is a torus *T*, a conjugacy class *C* consist of a single element $t \in T$. If *t* is generator, then the fixed point set of *t* is the same as the fixed point set of the whole group $T: M^C = M^t = M^T$. In this case M^C is smooth. Thus Borel's localization theorem follows from Theorem 1.4 by taking the conjugacy class $C = \{t\}$ in *T*.

2. The equivariant Euler class

Suppose a compact connected Lie group G acts on a smooth compact manifold M. Let C be a conjugacy class in G, and M^C as before. From now on we assume that M^C is smooth with oriented normal bundle. Denote by $i: M^C \to M$ the inclusion map and by $e_M \in H^*_G(M^C)$ the equivariant Euler class of the normal bundle of M^C in M.

Proposition 2.1. Let M be a compact connected oriented G-manifold. Then the equivariant Euler class e_M of the normal bundle of M^C in M is invertible in $\hat{H}^*_G(M^C)$.

Proof. Fix a *G*-invariant Riemannian metric on *M*. Then the normal bundle $\nu \to M^C$ is a *G*-equivariant vector bundle. Let ν_0 be the normal bundle minus the zero section. Since ν_0 is equivariantly diffeomorphic to an open set in $M - M^C$, $\hat{H}^*_G(\nu_0)$ vanishes by Proposition 1.3. From the Gysin long exact sequence in localized equivariant cohomology

$$\cdots \to \hat{H}^*_G(\nu_0) \to \hat{H}^*_G(M^C) \xrightarrow{\times e_M} \hat{H}^*_G(M^C) \to \hat{H}^*_G(\nu_0) \to \cdots$$

it follows that multiplication by the equivariant Euler class gives an automorphism of $\hat{H}^*_G(M^C)$. Thus e_M has an inverse in the ring $\hat{H}^*_G(M^C)$. \Box

Recall that the inclusion map $i: M^C \to M$ satisfies the identity

$$i^*i_*(x) = xe_M, \quad x \in H^*_G(M)$$

in equivariant cohomology. In the localized equivariant cohomology $\hat{H}_{G}^{*}(M^{C})$,

$$i^*i_*\frac{i^*x}{e_M} = \frac{i^*x}{e_M}e_M = i^*x.$$

By Theorem 1.4, i^* is an isomorphism. Hence,

$$i_*\left(\frac{i^*a}{e_M}\right) = a$$

for $a \in \hat{H}^*_G(M)$.

3. Relative localization formula

Let N be a G-manifold, e_N the equivariant Euler class of the normal bundle of N^C , and $f: M \to N$ a G-equivariant map. There is a commutative diagram of maps

$$\begin{array}{cccc}
 & M^{C} & \stackrel{i_{M}}{\longrightarrow} & M \\
 & f^{C} & & & & \\
 & N^{C} & & & & \\
 & & N^{C} & \stackrel{i_{N}}{\longrightarrow} & N
\end{array}$$
(3)

where i_M and i_N are inclusion maps and f^C is the restriction of f to M^C . Let

$$(f_G)_*: \hat{H}^*_G(M) \to \hat{H}^*_G(N), \qquad f^C_*: \hat{H}^*_G(M^C) \to \hat{H}^*_G(N^C)$$

be the push-forward maps in localized equivariant cohomology.

Theorem 3.1 (*Relative localization formula*). Let M and N be compact oriented manifolds on which a compact connected Lie group G acts, and $f: M \to N$ a G-equivariant map. For $a \in H^*_G(M)$,

$$(f_G)_*a = (i_N^*)^{-1} f_*^C \left(\frac{(f^C)^* e_N}{e_M} i_M^* a\right)$$

where the push-forward and restriction maps are in localized equivariant cohomology.

Proof. The commutative diagram (3), induces a commutative diagram in localized equivariant cohomology

$$\begin{aligned}
\hat{H}_{G}^{*}(M^{C}) \xrightarrow{i_{M*}} \hat{H}_{G}^{*}(M) \\
f_{*}^{C} \bigvee \qquad & \bigvee (f_{G})_{*} \\
\hat{H}_{G}^{*}(N^{C}) \xrightarrow{i_{N*}} \hat{H}_{G}^{*}(N)
\end{aligned} \tag{4}$$

By Eq. (2) and the commutativity of the diagram (4),

$$(f_G)_*a = (f_G)_*i_{M*}\left(\frac{1}{e_M}i_M^*a\right)$$
$$= i_{N*}f_*^C\left(\frac{1}{e_M}i_M^*a\right).$$

Hence,

$$i_N^*(f_G)_*a = i_N^*i_{N*}f_*^C\left(\frac{1}{e_M}i_M^*a\right)$$
$$= e_N f_*^C\left(\frac{1}{e_M}i_M^*a\right)$$
$$= (f^C)_*\left(\frac{(f^C)^*e_N}{e_M}i_M^*a\right)$$

since $y \cdot f_*^C(x) = f_*^C((f^C)^*(y) \cdot x)$ for $x \in H^*_G(M^C)$ and $y \in H^*_G(N^C)$. By Theorem 1.4, i_N^* is an isomorphism in localized equivariant cohomology,

$$(f_G)_*a = (i_N^*)^{-1} (f^C)_* \left(\frac{(f^C)^* e_N}{e_M} i_M^* a\right).$$

If in Theorem 3.1 we take the group G to be a torus T and the conjugacy class C to be the conjugacy class of a generator t for T, then $M^C = M^t = M^T$ and Theorem 3.1 specializes to the following formula of Lian et al. [10].

Corollary 3.2 (*Relative localization formula for a torus action*). Let M and N be manifolds on which a torus T acts, and $f: M \to N$ a T-equivariant map with compact oriented fibers. For $a \in \hat{H}^*_T(M)$,

$$(f_T)_*a = (i_N^*)^{-1} (f^T)_* \left(\frac{(f^T)^* e_N}{e_M} i_M^* a\right)$$

where the push-forward and restriction maps are in localized equivariant cohomology.

When N is a single point, Corollary 3.2 reduces to the Atiyah–Bott–Berline–Vergne localization formula.

4. Applications to the Gysin homomorphism in ordinary cohomology

Let G be a compact connected Lie group acting on a manifold M. Denote by M_G the homotopy quotient of M by G, and by M^G the fixed point set of the action of G on M. Let $h_M : M \to M_G$ be the inclusion of M as a fiber of the bundle $M_G \to BG$ and $i_M : M^G \to M$ the inclusion of the fixed point set M^G in M. The map h_M induces a homomorphism in cohomology

$$h_M^*: H_G^*(M) \to H^*(M).$$

The inclusion i_M induces a homomorphism in equivariant cohomology

$$i_M^*: H^*_G(M) \to H^*_G(M^G)$$

A cohomology class $a \in H^*(M)$ is said to have an *equivariant extension* $\tilde{a} \in H^*_G(M)$ under the *G* action if under the restriction map $h^*_M : H^*_G(M) \to H^*(M)$, the equivariant class \tilde{a} restricts to *a*.

Suppose $f: M \to N$ is a *G*-equivariant map of compact oriented *G*-manifolds. In this section we show that if a class in $H^*(M)$ has an equivariant extension, then its image under the Gysin map $f_*: H^*(M) \to H^*(N)$ in ordinary cohomology can be computed from the relative localization formulas (Corollary 3.2 or Theorem 3.1).

We consider first the case of an action by a torus T. Let $f_T: M_T \to N_T$ be the induced map of homotopy quotients and $f^T: M^T \to N^T$ the induced map of fixed point sets. As before, e_M denotes the equivariant Euler class of the normal bundle of the fixed point set M^T in M.

Proposition 4.1. Let $f: M \to N$ be a *T*-equivariant map of compact oriented *T*-manifolds. If a cohomology class $a \in H^*(M)$ has an equivariant extension $\tilde{a} \in H^*_T(M)$, then its image under the Gysin map $f_*: H^*(M) \to H^*(N)$ is,

(1) in terms of equivariant integration over M:

$$f_*a = h_N^* f_{T*} \tilde{a},$$

(2) in terms of equivariant integration over the fixed point set M^T :

$$f_*a = h_N^* (i_N^*)^{-1} \left(f^T \right)_* \left(\frac{(f^T)^* e_N}{e_M} i_M^* \tilde{a} \right).$$

Proof. The inclusions $h_M: M \to M_T$ and $h_N: N \to N_T$ fit into a commutative diagram

$$M \xrightarrow{h_M} M_T$$

$$f \downarrow \qquad \qquad \downarrow f_T$$

$$N \xrightarrow{h_N} N_T$$

This diagram is Cartesian in the sense that M is the inverse image of N under f_T . Hence, the push-pull formula $f_*h_M^* = h_N^* f_{T*}$ holds. Then

$$f_*a = f_*h_M^*\tilde{a} = h_N^*f_{T*}\tilde{a}$$

(2) follows from (1) and the relative localization formula for a torus action (Corollary 3.2). \Box

Using the relative localization formula for a conjugacy class, one obtains analogously a push-forward formula in terms of the fixed point sets of a conjugacy class. Now h_M and i_M are the inclusion maps

 $h_M: M \to M_G, \qquad i_M: M^C \to M,$

 e_M is the equivariant Euler class of the normal bundle of M^C in M, and $f^C: M^C \to N^C$ is the induced map on the fixed point sets of the conjugacy class C.

Proposition 4.2. Let $f: M \to N$ be a *G*-equivariant map of compact oriented *G*-manifolds. Assume that the fixed point sets M^C and N^C are smooth with oriented normal bundle. For a class $a \in H^*(M)$ that has an equivariant extension $\tilde{a} \in H^*_G(M)$,

$$f_*a = h_N^* (i_N^*)^{-1} (f^C)_* \left(\frac{(f^C)^* e_N}{e_M} i_M^* \tilde{a} \right).$$

5. Example: the Gysin homomorphism of flag manifolds

Let *G* be a compact connected Lie group with maximal torus *T*, and *H* a closed subgroup of *G* containing *T*. In [1] Akyildiz and Carrell compute the Gysin homomorphism for the canonical projection $f: G/T \to G/H$. In this section we deduce the formula of Akyildiz and Carrell from the relative localization formula in equivariant cohomology.

Let $N_G(T)$ be the normalizer of the torus T in the group G. The Weyl group W_G of T in G is $W_G = N_G(T)/T$. We use the same letter w to denote an element of the Weyl group W_G and a lift of the element to the normalizer $N_G(T)$. The Weyl group W_G acts on G/T by

$$(gT)w = gwT$$
 for $gT \in G/T$ and $w \in W_G$.

This induces an action of W_G on the cohomology ring $H^*(G/T)$.

We may also consider the Weyl group W_H of T in H. By restriction the Weyl group W_H acts on G/T and on $H^*(G/T)$.

To each character γ of T with representation space \mathbb{C}_{γ} , one associates a complex line bundle

$$L_{\gamma} := G \times_T \mathbb{C}_{\gamma}$$

over G/T. Fix a set $\Delta^+(H)$ of positive roots for T in H, and extend $\Delta^+(H)$ to a set Δ^+ of positive roots for T in G.

Theorem 5.1. [1] The Gysin homomorphism $f_*: H^*(G/T) \to H^*(G/H)$ is given by, for $a \in H^*(G/T)$,

$$f_*a = \frac{\sum_{w \in W_H} (-1)^w w \cdot a}{\prod_{\alpha \in \Delta^+(H)} c_1(L_\alpha)}.$$

Remark 5.2. There are two other ways to obtain this formula. First, using representation theory, Brion [5] proves a push-forward formula for flag bundles that includes Theorem 5.1 as a special case. Secondly, since $G/T \rightarrow G/H$ is a fiber bundle with equivariantly formal fibers, the method of [12] using the ABBV localization theorem also applies.

To deduce Theorem 5.1 from Proposition 4.1 we need to recall a few facts about the cohomology and equivariant cohomology of G/T and G/H (see [12]).

5.1. Cohomology ring of BT

Let $ET \to BT$ be the universal principal *T*-bundle. To each character γ of *T*, one associates a complex line bundle S_{γ} over *BT* and a complex line bundle L_{γ} over *G*/*T*:

$$S_{\gamma} := ET \times_T \mathbb{C}_{\gamma}, \qquad L_{\gamma} := G \times_T \mathbb{C}_{\gamma}.$$

1498

For definiteness, fix a basis $\chi_1, \ldots, \chi_\ell$ for the character group \hat{T} , where we write the characters additively, and set

$$u_i = c_1(S_{\chi_i}) \in H^2(BT), \qquad z_i = c_1(L_{\chi_i}) \in H^2(G/T).$$

Let $R = \text{Sym}(\hat{T})$ be the symmetric algebra over \mathbb{Q} generated by \hat{T} . The map $\gamma \mapsto c_1(S_{\gamma})$ induces an isomorphism

$$R = \operatorname{Sym}(T) \to H^*(BT) = \mathbb{Q}[u_1, \dots, u_\ell].$$

The map $\gamma \mapsto c_1(L_{\gamma})$ induces an isomorphism

$$R = \operatorname{Sym}(\hat{T}) \to \mathbb{Q}[z_1, \ldots, z_\ell].$$

The Weyl groups W_G and W_H act on the characters of T and hence on R: for $w \in W_G$ and $\gamma \in \hat{T}$,

$$(w \cdot \gamma)(t) = \gamma \left(w^{-1} t w \right).$$

5.2. Cohomology rings of flag manifolds

The cohomology rings of G/T and G/H are described in [4]:

$$H^*(G/T) \simeq \frac{R}{(R_+^{W_G})} \simeq \frac{\mathbb{Q}[z_1, \dots, z_\ell]}{(R_+^{W_G})},$$
$$H^*(G/H) \simeq \frac{R^{W_H}}{(R_+^{W_G})} \simeq \frac{\mathbb{Q}[z_1, \dots, z_\ell]^{W_H}}{(R_+^{W_G})}$$

where $(R_{+}^{W_G})$ denotes the ideal generated by the W_G -invariant homogeneous polynomials of positive degree.

The torus T acts on G/T and G/H by left multiplication. For each character χ of T, let $K_{\chi} := (L_{\chi})_T$ be the homotopy quotient of the bundle L_{χ} by the torus T. Then K_{χ} is a complex line bundle over $(G/T)_T$. Their equivariant cohomology rings are (see [12])

$$H_T^*(G/T) = \frac{\mathbb{Q}[u_1, \dots, u_\ell, y_1, \dots, y_\ell]}{J},$$

$$H_T^*(G/H) = \frac{\mathbb{Q}[u_1, \dots, u_\ell] \otimes (\mathbb{Q}[y_1, \dots, y_\ell]^{W_H})}{J}$$

where $y_i = c_1(K_{\chi_i}) \in H^*_T(G/T)$ and J denotes the ideal generated by q(y) - q(u) for $q \in R^{W_G}_+$.

5.3. Fixed point sets

The fixed point sets of the *T*-action on G/T and on G/H are the Weyl group W_G and the coset space W_G/W_H respectively. Since these are finite sets of points,

$$H_T^*(W_G) = \bigoplus_{w \in W_G} H_T^*(\{w\}) \simeq \bigoplus_{w \in W_G} R$$
$$H_T^*(W_G/W_H) = \bigoplus_{w \in W_G/W_H} R.$$

Thus, we may view an element of $H_T^*(W_G)$ as a function from W_G to R, and an element of $H_T^*(W_G/W_H)$ as a function from W_G/W_H to R.

Let $h_M : M \to M_T$ be the inclusion of M as a fiber in the fiber bundle $M_T \to BT$ and $i_M : M^T \to M$ the inclusion of the fixed point set M^T in M. Note that i_M is T-equivariant and induces a homomorphism in T-equivariant cohomology, $i_M^* : H_T^*(M) \to H_T^*(M^T)$. In order to apply Proposition 4.1, we need to know how to calculate the restriction maps

$$h_M^*: H_T^*(M) \to H^*(M)$$
 and $i_M^*: H_T^*(M) \to H_T^*(M^T)$

as well as the equivariant Euler class e_M of the normal bundle to the fixed point set M^T , for M = G/T and G/H. This is done in [12].

5.4. Restriction and equivariant Euler class formulas for G/T

Since $h_M^*: H_T^*(M) \to H^*(M)$ is the restriction to a fiber of the bundle $M_T \to BT$, and the bundle $K_{\chi_i} = (L_{\chi_i})_T$ on M_T pulls back to L_{χ_i} on M,

$$h_M^*(u_i) = 0, \qquad h_M^*(y_i) = h_M^*(c_1(K_{\chi_i})) = c_1(L_{\chi_i}) = z_i.$$
 (5)

Let $i_w: \{w\} \to G/T$ be the inclusion of the fixed point $w \in W_G$ and

$$i_w^*$$
: $H_T^*(G/T) \to H_T^*(\{w\}) = R$

the induced map in equivariant cohomology. By [12], for $p(y) \in H_T^*(G/T)$,

$$i_w^* u_i = u_i, \qquad i_w^* p(y) = w \cdot p(u), \qquad i_w^* c_1(K_\gamma) = w \cdot c_1(S_\gamma).$$
 (6)

Thus, the restriction of p(y) to the fixed point set W_G is the function $i_M^* p(y) : W_G \to R$ whose value at $w \in W_G$ is

$$(i_M^* p(\mathbf{y}))(w) = w \cdot p(u). \tag{7}$$

The equivariant Euler class of the normal bundle to the fixed point set W_G assigns to each $w \in W_G$ the equivariant Euler class of the normal bundle v_w at w; thus, it is also a function $e_M : W_G \to R$. By [12],

$$e_M(w) = e^T(v_w) = w\left(\prod_{\alpha \in \Delta^+} c_1(S_\alpha)\right) = (-1)^w \prod_{\alpha \in \Delta^+} c_1(S_\alpha).$$
(8)

5.5. Restriction and equivariant Euler class formulas for G/H

For the manifold M = G/H, the formulas for the restriction maps h_N^* and i_N^* are the same as in (5) and (6), except that now the polynomial p(y) must be W_H -invariant. In particular,

$$h_N^*(u_i) = 0, \qquad h_N^* p(y) = p(z), \qquad h_N^* (c_1(K_\gamma)) = c_1(L_\gamma),$$
(9)

and

$$(i_N^* p(\mathbf{y}))(wW_H) = w \cdot p(u).$$
⁽¹⁰⁾

If $\gamma_1, \ldots, \gamma_m$ are characters of T such that $p(c_1(K_{\gamma_1}), \ldots, c_1(K_{\gamma_m}))$ is invariant under the Weyl group W_H , then

$$(i_N^* p(c_1(K_{\gamma_1}), \dots, c_1(K_{\gamma_m})))(wW_H) = w \cdot p(c_1(S_{\gamma_1}), \dots, c_1(S_{\gamma_m})).$$
(11)

The equivariant Euler class of the normal bundle of the fixed point set W_G/W_H is the function $e_N: W_G/W_H \to R$ given by

$$e_N(wW_H) = w \cdot \left(\prod_{\alpha \in \Delta^+ - \Delta^+(H)} c_1(S_\alpha)\right).$$
⁽¹²⁾

Proof of Theorem 5.1. With M = G/T and N = G/H in Proposition 4.1, let

$$p(z) \in H^*(G/T) = \mathbb{Q}[z_1, \ldots, z_\ell]/(R^{W_G}_+).$$

It is the image of $p(y) \in H^*_T(G/T)$ under the restriction map $h^*_M : H^*_T(G/T) \to H^*(G/T)$. By Proposition 4.1,

$$f_*p(z) = f_*h_M^*p(y) = h_N^*f_{T*}p(y)$$
(13)

and

$$f_{T*}p(y) = (i_N^*)^{-1} (f^T)_* \left(\frac{(f^T)^* e_N}{e_M} i_M^* p(y) \right).$$

By Eqs. (7), (8), and (12), for $w \in W_G$,

$$(i_M^* p(y))(w) = i_w^* p(y) = w \cdot p(u),$$

and

$$\binom{(f^T)^* e_N}{e_M}(w) = \frac{e_N(wW_H)}{e_M(w)} = w \cdot \left(\frac{\prod_{\alpha \in \Delta^+ - \Delta^+(H)} c_1(S_\alpha)}{\prod_{\alpha \in \Delta^+} c_1(S_\alpha)}\right)$$
$$= \frac{1}{w \cdot (\prod_{\alpha \in \Delta^+(H)} c_1(S_\alpha))}.$$

To simplify the notation, define temporarily the function $k: W_G \rightarrow R$ by

$$k(w) = w \cdot \left(\frac{p(u)}{\prod_{\alpha \in \Delta^+(H)} c_1(S_\alpha)}\right).$$

Then

$$f_{T*}p(y) = (i_N^*)^{-1} (f^T)_*(k).$$
(14)

Now $(f^T)_*(k) \in H^*_T(W_G/W_H)$ is the function: $W_G/W_H \to R$ whose value at the point wW_H is obtained by summing k over the fiber of $f^T: W_G \to W_G/W_H$ above wW_H . Hence,

$$((f^{T})_{*}k)(wW_{H}) = \sum_{wv \in wW_{H}} wv \cdot \left(\frac{p(u)}{\prod_{\alpha \in \Delta^{+}(H)} c_{1}(S_{\alpha})}\right)$$
$$= w \cdot \sum_{v \in W_{H}} v \cdot \left(\frac{p(u)}{\prod_{\alpha \in \Delta^{+}(H)} c_{1}(S_{\alpha})}\right).$$

By (11), the inverse image of this expression under i_N^* is

$$(i_N^*)^{-1} (f^T)_* k = \sum_{v \in W_H} v \cdot \left(\frac{p(y)}{\prod_{\alpha \in \Delta^+(H)} c_1(K_\alpha)} \right).$$
(15)

Finally, combining (13), (14), (15) and (9),

$$f_*p(z) = h_N^*(f_T)_*p(y) = \sum_{v \in W_H} v \cdot \left(\frac{p(z)}{\prod_{\alpha \in \Delta^+(H)} c_1(L_\alpha)}\right). \qquad \Box$$

Acknowledgements

We thank Michel Brion for many helpful discussions.

References

- [1] E. Akyildiz, J.B. Carrell, An algebraic formula for the Gysin homomorphism from G/B to G/P, Illinois J. Math. 31 (1987) 312–320.
- [2] M. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1–28.
- [3] M. Atiyah, G.B. Segal, The index of elliptic operators: II, Ann. of Math. 87 (1968) 531-545.
- [4] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953) 115–207.
- [5] M. Brion, The push-forward and Todd class of flag bundles, in: P. Pragacz (Ed.), Parameter Spaces, in: Banach Center Publications, vol. 36, 1996, pp. 45–50.
- [6] J.J. Duistermaat, Equivariant cohomology and stationary phase, Contemp. Math. 179 (1994) 45-61.
- [7] D. Edidin, W. Graham, Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math. 120 (1998) 619-636.
- [8] G. Ellingsrud, S. Strømme, Bott's formula and enumerative geometry, J. Amer. Math. Soc. 9 (1996) 175–193.
- [9] V. Guillemin, S. Sternberg, Supersymmetry and Equivariant de Rham Theory, Springer, Berlin, 1999.
- [10] B. Lian, K. Liu, S.-T. Yau, Mirror principle II, Surveys Differ. Geom. 5 (1999) 455–509.
- [11] D. Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Adv. in Math. 7 (1971) 29-56.
- [12] L.W. Tu, The Gysin map, equivariant cohomology, and symmetrizing operators, Preprint.